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Jung S, Boie G, Doerr H, Trollmann R. Oxygen-sensitive regu-
lation and neuroprotective effects of growth hormone-dependent
growth factors during early postnatal development. Am J Physiol
Regul Integr Comp Physiol 312: R539–R548, 2017. First published
February 22, 2017; doi:10.1152/ajpregu.00477.2016.—Perinatal hyp-
oxia severely disrupts metabolic and somatotrophic development, as
well as cerebral maturational programs. Hypoxia-inducible transcrip-
tion factors (HIFs) represent the most important endogenous adaptive
mechanisms to hypoxia, activating a broad spectrum of growth factors
that contribute to cell survival and energy homeostasis. To analyze
effects of systemic hypoxia and growth hormone (GH) therapy
(rhGH) on HIF-dependent growth factors during early postnatal de-
velopment, we compared protein (using ELISA) and mRNA (using
quantitative RT PCR) levels of growth factors in plasma and brain
between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7)
at P14. Exposure to hypoxia led to reduced body weight (P � 0.001)
and length (P � 0.04) compared with controls and was associated
with significantly reduced plasma levels of mouse GH (P � 0.01) and
IGF-1 (P � 0.01). RhGH abrogated these hypoxia-induced changes of
the GH/IGF-1 axis associated with normalization of weight and length
gain until P14 compared with controls. In addition, rhGH treatment
increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA
levels, resulting in significantly reduced apoptotic cell death in the
hypoxic, developing mouse brain. These data indicate that rhGH may
functionally restore hypoxia-induced systemic dysregulation of the
GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-
dependent growth factors in the hypoxic developing brain.
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natal hypoxia; neuroprotection; cerebral apoptosis; erythropoietin;
hypoxia-inducible transcription factors

TISSUE HYPOXIA and ischemia during perinatal development, for
example, as a consequence of utero-placental or placenta-fetal
insufficiency, or maternal gestational disease (e.g., diabetes,
eclampsia), as well as postnatal hypoxic complications, such as
apneic spells or cardiovascular insufficiency (6, 23, 29), are
well known predisposing risk factors for intermittent acute and
chronic perinatal hypoxia and metabolic restriction (9, 23, 41).
This may result in long-term disturbances of growth and
development (e.g., fetal growth restriction, intrauterine growth
retardation), as well as hypoxic-ischemic (HI) multiorgan fail-
ure, including HI brain injury.

At the molecular level, vasoactive, vasoproliferative, meta-
bolic, and cytotrophic adaptive systems are upregulated imme-
diately in response to perinatal hypoxia in an age- and tissue-
specific manner (38). Among them, hypoxia-inducible tran-
scription factor-1 (HIF-1) and HIF-2 have been characterized
as the most important regulators of molecular responses to
acute hypoxia and ischemia during early development (38).
HIFs act as heterodimeric transcription factors, consisting of
the O2-regulated � subunit, and the constitutively expressed
�-subunit. In response to hypoxia, the HIF-� subunit accumu-
lates at the protein level, followed by transcriptional acti-
vation of specific target genes involved in cellular mecha-
nisms that modify oxygen and energy supply. These mech-
anisms include activation of glucose utilization, vasoactive
factors [e.g., adrenomedullin (ADM), vascular endothelial
growth factor (VEGF)], and cytotrophic mediators [e.g.,
erythropoietin (EPO), insulin-like growth factor (IGF)-1,
IGF-2, and growth hormone (GH)] (38, 46). Clinical (45)
and experimental studies using a neonatal rat model of
perinatal sublethal HI (20) have demonstrated the postnatal
significance of disturbances of the GH/IGF-1 axis during
acute perinatal HI related to restricted growth development
and increased cerebral apoptosis in rats exposed to HI (20).

Accumulating evidence indicates that the GH/IGF-1 system
and GH receptors (GHRs) crucially modify neurogenesis dur-
ing early development, as well as proliferation, differentiation,
and survival of neural precursors (3, 12, 24, 37, 40, 47). IGF-1
and IGF-2, which are released from all neural cell types, and
are functionally regulated by the presence of IGF-binding
proteins, have been shown to modify neuronal differentiation
and survival via paracrine signaling, and binding to the cere-
bral GHR mainly expressed in regions of active neurogenesis
(2, 4, 5). Functionally, GHR activation modulates synaptogen-
esis, neurotransmitter regulation, and learning and memory
functions (24, 25).

Upon focal cerebral ischemia, potentiation of injury-induced
neurogenesis and repair (8, 11, 12, 25) and anti00.apoptotic
effects have been demonstrated in response to rhGH in HI
injury of adult rodent brain (25) and adult neurosphere cultures
(12). In addition, rhGH significantly improved learning and
memory dysfunctions in rats exposed to intermittent hypoxia
(10% O2 for 12 h) and increased expression of neurotrophic
factors such as IGF-1, erythropoietin, and VEGF in the adult
rat hippocampus (25). In vitro analysis showed an increased
proliferation and survival of subgranular zone-derived neuro-
spheres in response to recombinant human growth hormone
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(rhGH), promoting the activation of protein kinase B, mecha-
nistic target of rapamycin (Akt-mTOR), and Jun amino-termi-
nal kinase (JNK) signaling pathways (12).

However, observations regarding the role of the GH/IGF-1
axis in regulation of early growth development, as well as
cerebral protection and repair upon perinatal acute systemic
hypoxia, are contradictory (12, 20, 25, 47). Therefore, here we
used an established murine model of perinatal systemic hyp-
oxia (44) to test the hypotheses that exogenous rhGH 1)
compensates for hypoxia-induced alterations of the GH/IGF-1
axis during early development, and 2) activates oxygen-sensi-
tive neurotrophic growth factors in the developing hypoxic
brain.

MATERIALS AND METHODS

Chemicals. Water and sodium chloride 0.9% (wt/vol) solution for
injection were purchased from Berlin-Chemie (Berlin, Germany).
Dulbecco’s phosphate-buffered saline without calcium and magne-
sium (DPBS w/o) was purchased from PAA (Pasching, Austria).
BSA, glycine, hydrochloric acid, mannitol, sodium phosphate-mono-
basic, sodium phosphate-dibasic anhydrous, sulfuric acid, and Tween
20 were purchased from Carl Roth (Karlsruhe, Germany). LiChrosolv
water and sodium hydroxide were purchased from Merck Chemicals
(Schwalbach, Germany). HEPES was purchased from Sigma-Aldrich
(Taufkirchen, Germany). Recombinant carrier-free murine IGF-2 was
purchased from R&D Systems (Wiesbaden-Nordenstadt, Germany),
dissolved in DPBS w/o to a final concentration of 100 �g/ml, and
stored at �80°C until further use.

Animal experiments. Animal experiments were performed in ac-
cordance with protocols approved by the National Care Committee
(Regierung Mittelfranken, Germany) and national and European laws
on the protection of animals. A total of 80 7-day-old mice at postnatal
day 7 (P7) (C57BL/6NCrl wild-type; Charles River Laboratories,
Sulzfeld, Germany) were randomized into the following groups: 1)
hypoxia exposure at P7, regeneration period of 7 days (n � 8); 2)
normoxic controls (n � 8); 3) hypoxia exposure at P7 and vehicle
treatment (rhGH solvent), regeneration period of 7 days (n � 8); 4)
normoxic, vehicle-treated controls (n � 8); 5) hypoxia exposure and
rhGH injection (1,000/4,000 �g/kg), regeneration period of 7 days
(n � 16); and 6) normoxic controls (rhGH 1,000/4,000 �g/kg)
(n � 16).

Hypoxia experiments were performed as previously described (44).
Briefly, pups at P7 were exposed to continuous systemic hypoxia
(FIo2

8%) for 6 h at controlled ambient temperature (Hypoxic Work-
station INVIVO2 400; Ruskinn Life Sciences, Bridgend, UK). To
enable adjustment to the hypoxic environment, FIo2

was gradually
decreased (2% O2 every 10 min). Age-matched controls were kept in
the INVIVO2 chamber in room air. After the incubation period, mice
were kept in room air (21% O2) until P14, together with their dams to
allow for normal temperature and nutrition.

RhGH (0.2 mg, Genotropin MiniQuick; Pfizer, Berlin, Germany) was
diluted in a total volume of 0.1 ml according to the manufacturer’s
protocol (final concentration of 0.8 mg/ml; water for injection, 840 �g
glycine, 50 mg mannitol, 180 �g sodium phosphate-monobasic, 100 �g
sodium phosphate-dibasic anhydrous per milliliter). RhGH was admin-
istered at a dose of 1,000 or 4,000 �g/kg body wt ip (n � 8 per group)
at the end of the hypoxia period (0 h), and at 24, 48, and 72 h after
hypoxia. Age-matched controls were treated with rhGH solvent (injection
volume of 0.1 ml ip; n � 8 per group) or remained untreated (n � 8 per
group). The treatment regimen was performed following studies outlined
in the literature, including safety and pharmacokinetic data (25), and
preliminary dose-response studies in neonatal mice (data not shown).
Body weight and length were determined using a standardized protocol.
Briefly, pups were photographed with a fiducial length marker, and
nose-to-anus length was calculated using ImageJ 1.48v software (Na-

tional Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij/,
1997–2014). Brains were prepared (P14), weighed, snap frozen in
liquid nitrogen, and stored at �80°C until further mRNA and protein
analyses. The brain-to-body weight ratio of each animal was deter-
mined. Blood samples were collected in Microvette K3 EDTA tubes
(Sarstedt, Nuembrecht, Germany) and immediately centrifuged at 500 g
at 4°C for 10 min. Plasma was separated promptly, snap frozen in liquid
nitrogen, and stored at �80°C until further analysis. Plasma protein
concentration was determined label-free at 280 nm by UV/Vis-spectros-
copy using a NanoDrop ND 2000c (Peqlab VWR, Erlangen, Germany).

Real-time RT-PCR. Total cellular RNA was extracted using TRIzol
according to the manufacturer’s protocol (Life Technologies, Darm-
stadt, Germany). Genomic DNA was removed by DNase I (Promega,
Mannheim, Germany) treatment. Briefly, 2 �g of RNA were digested
with 2 U of DNase I in a total volume of 20 �l of 1� reaction buffer
for 15 min at room temperature. EDTA was added to a final concen-
tration of 2.5 mM, followed by incubation at 65°C for 15 min.
Subsequently, 0.4 �g of dT(16) oligonucleotides (Eurofins MWG
Operon, Ebersberg, Germany), 0.6 �g of dN(6) random hexamer
oligonucleotides (Roche Diagnostics, Mannheim, Germany), and
DEPC water were added to a final volume of 32 �l. The reaction
mixture was incubated at 70°C for 5 min and chilled. Reverse
transcription was carried out at 37°C for 1 h in the presence of 10 �l
of 5� reaction buffer, 20 U of recombinant RNasin ribonuclease
inhibitor, 200 units of Moloney murine leukemia virus reverse tran-
scriptase (Promega), 5 �l of 5 mM dNTP mix (Fisher Scientific,
Schwerte, Germany), and DEPC-treated water to a final volume of 52
�l. Complementary DNA was quantified by UV-Vis spectroscopy,
adjusted with LiChrosolv water to a final concentration of 200 ng/�l,
and stored at �80°C until further use. Real-time PCR was performed
in duplicate using the qPCR Core kit with 6-carboxy-X-rhodamine
(ROX) following the manufacturer’s protocol (Eurogentec, Seraing,
Belgium). In brief, 1 �g of cDNA was assayed in the presence of 5
mM MgCl2, 0.2 mM dNTP mix with dUTP, 0.6–0.9 �M forward
primer (for), 0.3–0.9 �M reverse primer (rev), 0.25 U uracil-DNA
glycosylase (Eurogentec), and 0.2 �M of a gene-specific dual-labeled
fluorescent probe (Biomers, Ulm, Germany) in a final volume of 25
�l. Real-time PCR was conducted using a CFX96 Touch Real-Time
PCR System (Bio-Rad, Munich, Germany) with the following thermal
profile: one cycle at 50°C for 2 min and 95°C for 10 min, 50 cycles
at 95°C for 5 s, followed by 60°C for 10 s. All reactions were
performed in duplicate using �-actin and porphobilinogen deaminase
(PBGD) as endogenous controls. Table 1 summarizes the primers and
TaqMan probe used in this study that are based on published reports.

ELISA. Plasma concentrations of murine IGF-1 and GH, as well as
human GH were measured in duplicates using a mouse IGF-1 ELISA
(R&D Systems, Wiesbaden-Nordenstadt, Germany), rat GH-specific
ELISA (Life Technologies, Darmstadt, Germany), and human GH-
specific ELISA (R&D Systems) following the manufacturer’s proto-
col. EDTA plasma samples were diluted in DPBS w/o to 100 or 1,000
�g/ml total protein. To dissociate insulin-like growth factor-binding
protein (IGFBP)-3-bound IGF-1, and to block respective IGFBP-3
binding sites, 200 �l of diluted plasma was pretreated with 50 �l of
1 N HCl, incubated at 4°C for 15 min, and neutralized with 50 �l of
1.2 N NaOH, 0.5 M HEPES, and 300 ng/ml mIGF-2. Pretreated
samples were processed immediately and assayed in duplicate.

Immunohistochemistry. For immunohistochemical analysis, coro-
nal sections (3 �m thick) of paraformaldehyde embedded mouse
brains at the level of the dorsal hippocampus were made (n � 3 per
group). After heat-induced epitope retrieval, washing (TBS/0.05%
Tween 20), and blocking with normal goat serum, sections were
incubated with the monoclonal rabbit anti-human cleaved caspase-3
antibody (1:50; Merck Millipore, Schwalbach, Germany) overnight at
4°C. After washing was completed, sections were incubated with
Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:100; Life Tech-
nologies) secondary antibody for 60 min at room temperature. Sec-
tions were incubated at room temperature for 2 h, followed by
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incubation with Alexa Fluor 488-conjugated secondary antibody (1:
500; Invitrogen, Eugene, OR). For all incubations, a humidified
chamber was used. Negative controls were performed by omitting the
primary antibody. All staining was performed in triplicate. Quantita-
tive evaluation of immunohistochemical staining in the cerebral pa-
rietal cortex, hippocampus, and subventricular zone (SVZ) was per-
formed by counting the number of positive cells in relation to
normoxic and vehicle-treated samples (2 � 5 visual fields, right and
left hemispheres per region/section), using a Scope.A1 microscope
(Zeiss, Jena, Germany).

TUNEL staining. To determine the degree of apoptosis-like cell
death, terminal deoxynucleotidyl transferase-mediated dUTP end-
labeling (TUNEL) staining (In Situ Cell Death Detection Kit; Pro-
mega, Germany) was performed using Streptavidin 488 conjugate
(Life Technologies) for visualization by immunofluorescence of cor-
onal sections at the level of the dorsal hippocampus (n � 3 per group)
(44). The number of TUNEL-positive cells in the parietal cortex,
hippocampus, and SVZ was counted and compared with controls (2 �
5 visual fields; right and left hemispheres per region/section), accord-
ing to the method described above. Quantification of TUNEL and
cleaved caspase-3 staining was performed by two investigators who
were blinded to the study groups.

Statistical analysis. Data are shown as means and standard errors of
the mean (SEM), and differences between groups (normoxia vs.
hypoxia, controls vs. rhGH-treatment) were assessed by two-way
ANOVA with a Bonferroni multiple-comparison test as the post hoc
test, adjusting the significance level for 15 comparisons (GraphPad
6.05v, La Jolla, CA). Family-wise significance and confidence level
was 0.05 (95% confidence interval); two-tailed values of P � 0.05
were considered statistically significant.

RESULTS

Systemic hypoxia modulates somatotrophic GH axis during
the perinatal period. At the end of hypoxic incubation (P7),
body weight and length did not significantly differ between
normoxic and hypoxic mice. In contrast, after the regeneration
period of 3 and 7 days, gain of weight was significantly less in
hypoxia-exposed animals compared with controls (Fig. 1A,
P � 0.0001). Similarly, significant differences in body length
between hypoxia-exposed pups and controls were observed
after 7 days of regeneration (Fig. 1B, P � 0.022). There were
no significant differences in brain-to-body weight ratio (Fig.
2C). Plasma levels of mouse GH (mGH; Fig. 1C, P � 0.0022)
and mIGF-1 (Fig. 1C, P � 0.0024) were significantly less in
mice exposed to hypoxia than in normoxic controls after the
regeneration interval of 7 days.

Systemic hypoxia differentially modulates cerebral growth
factor expression. To analyze cerebral regulation of GH-de-
pendent growth factors in response to hypoxia, we determined
cerebral mRNA concentrations of GHR, IGFs, and their bind-
ing proteins after a regeneration period of 7 days. Hypoxia-
exposed brains revealed significantly greater IGF-1 (Fig. 3A,
P � 0.05) and lesser IGF-2 mRNA levels than normoxic
controls (Fig. 3B, P � 0.05), whereas mRNA levels of IGF-1R,
IGF-2R, IGFBP-2, IGFBP-3, and IGFBP-4 were similar in
both groups (Table 2). As expected, after the 7-day regener-
ation period, there was no significant difference in cerebral
mRNA levels of HIF-dependent vasoactive (ADM, VEGF,

Table 1. DNA oligonucleotides used for real-time PCR

Gene Sense 5=-3= Sequence

�-Actin Forward 5=-ATGCTCCCCGGGCTGTAT-3=
Reverse 5=-TCACCCACATAGGAGTCCTTCTG-3=
Probe 5=(Fam)-ATCACACCCTGGTGCCTAGGGCG-(BMN-Q535)-3=

PBGD Forward 5=-ACAAGATTCTTGATACTGCACTCTCTAAG-3=
Reverse 5=-CCTTCAGGGAGTGAACGACCA-3=
Probe 5=(Fam)-TCTAGCTCCTTGGTAAACAGGCTCTTCTCTCCA-(BMN-Q535)-3=

IGF-1 Forward 5=-TGGACCAGAGACCCTTTG-3=
Reverse 5=-CCTGTGGGCTTGTTGAAG-3[priTGGACCGAGG-(BMN-Q535)-3=me]
Probe 5=(Fam)-TGCTCTTCAGTTCGTGTG

IGF-2 Forward 5=-GCTTCTACTTCAGCAGGC-3=
Reverse 5=-GTGGCACAGTATGTCTCC-3=
Probe 5=(Fam)-AACCGTCGCAGCCGTGGCATCGTGGAA-(BMN-Q535)-3=

IGF-1R Forward 5=-TCAGGCTACCTCCCTCTC-3=
Reverse 5=-TGAAGTTCTCATACGTCGTTTTGG-3=
Probe 5=(Fam)-CAGGATCTGTCCATGACCCATTCCC-(BMN-Q535)-3=

IGF-2R Forward 5=-AGAAACAGACCAGGCTTGC-3=
Reverse 5=-GCACCACAGATATTGAACACAAAAG-3=
Probe 5=(Fam)-TGTCCTTGAGCAGAATCGTTGAGTGGGC-(BMN-Q535)-3=

IGFBP-2 Forward 5=-ACAGCAGGTTGCAGACAGTG-3=
Reverse 5=-TGACTTGAGGGGCTTCCG-3=
Probe 5=(Fam)-TGAGGGAGGCCTGGTGGAGAACC-(BMN-Q535)-3=

IGFBP-3 Forward 5=-AACCTGCTCCAGGAAACATC-3=
Reverse 5=-AATCGGTCACTCGGTGTG-3=
Probe 5=(Fam)-GCATTGTGCTCCTCCTCGGACTCAC-(BMN-Q535)-3=

IGFBP-4 Forward 5=-TCCACCCCAAACAGTGTCAC-3=
Reverse 5=-TCCAAACCCCCAGGAAGC-3=
Probe 5=(Fam)-ACTTGCCACGCTGTCCGTCCAGG-(BMN-Q535)-3=

EPO Forward 5=-AAGGTCCCAGACTGAGTGAAAATATTAC-3=
Reverse 5=-GGACAGGCCTTGCCAAACT-3=
Probe 5=(Fam)-TCTATGGCCTGTTCTTCCACCTCCATTCT-(BMN-Q535)-3=

EPO-R Forward 5=-GGATGGACTTCAACTACAGCTTCTC-3=
Reverse 5=-GAGCCTGGTGCAGGCTACA-3=
Probe 5=(Fam)-GACTTTCGTGACTCACCCTCGAGCTGG-(BMN-Q535)-3=
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VEGFR-1, and VEGFR-2; data not shown) or cytotrophic
factors (EPO, EPO-R) between hypoxia-exposed and nor-
moxic brains (Table 2).

The differential regulation of IGFs (Fig. 3 and Table 2) was
associated with increased apoptotic cell death in the developing
hippocampus (CA1, dentate gyrus) and SVZ, quantified by
TUNEL-positive (Fig. 4, P � 0.01) and cleaved caspase-3-
positive cells (data not shown).

Dose-dependent effects of rhGH on neonatal growth and the
mGH/IGF-1 axis. In response to low-dose rhGH treatment,
body weight (Fig. 2A, P � 0.0003) and length (Fig. 2B) were
less in hypoxia-exposed animals compared with normoxic
controls after the regeneration period of 7 days. However,
high-dose treatment (rhGH 4,000 �g/kg) significantly in-
creased the gain of body weight and length in hypoxia-exposed
mice (Fig. 2, A and B). Thus hypoxia-induced differences in
growth between rhGH- and vehicle-treated pups were abro-
gated by high-dose therapy (Fig. 2B). There were no significant
alterations in brain-to-body weight ratio (Fig. 2C). In addition,
hypoxia-exposed mice treated with rhGH at both doses showed
significantly greater plasma levels of mGH compared with vehi-
cle-treated controls (Fig. 2D, P � 0.05), indicating compensation
of the hypoxia-induced decrease. Similarly, rhGH led to signifi-
cantly greater plasma levels of mIGF-1 in hypoxia-exposed pups
compared with controls (Fig. 2E, P � 0.01), and abolished the
difference in plasma mIGF-1 levels between hypoxia-exposed
and normoxic animals.

Antiapoptotic effects of rhGH in the hypoxic developing
mouse brain. Because apoptotic cell death due to cerebral
hypoxia is expected after a period of latency, we quantified the
degree of apoptosis in developing mouse brains after a recov-
ery period of 7 days. We observed significantly fewer TUNEL-
positive cells in the developing hippocampus (Fig. 4) and SVZ

(Fig. 5) in mice treated with rhGH than mice treated with the
vehicle only. In each study group, these region-specific results
of TUNEL staining were confirmed by the immunohistochem-
ical findings for cleaved caspase-3 (data not shown).

RhGH treatment modifies cerebral expression of growth
factors. Neither hypoxia nor rhGH therapy induced marked
alterations in cerebral mRNA levels of IGF-R1, IGF-R2,
IGFBP-3, IGFBP-4, and EPO-R (Table 2). HIF-dependent
vasoactive growth factors (ADM, VEGF, VEGFR-1,
VEGFR-2; data not shown) were similar in animals exposed to
hypoxia and control animals after 7 days of regeneration.
However, rhGH therapy was associated with significantly
greater cerebral IGF-1 (Fig. 3A, P � 0.05) and IGF-2 mRNA
levels (Fig. 3B, P � 0.05) compared with hypoxic and nor-
moxic controls, and thus prevented the hypoxia-induced de-
crease in IGF-2 mRNA concentration. Moreover, high-dose
rhGH treatment led to a significant upregulation of cerebral
IGFBP-2 mRNA expression compared with controls (Table 2,
P � 0.05). Furthermore, a significant upregulation of EPO
mRNA concentrations in normoxic and hypoxia-exposed de-
veloping brains by rhGH was found in a dose-dependent
manner (Fig. 3C, P � 0.05).

DISCUSSION

The present analysis of hypoxia- and rhGH-induced effects
on growth and cytotrophic growth factors in neonatal mice
showed that rhGH treatment during the early posthypoxic
period prevents hypoxia-induced postnatal weight loss and
impairment of length development. Our data strongly suggest
underlying dose-dependent effects of rhGH on the endogenous
mGH/IGF-1 axis during early development. Furthermore, we
demonstrated that cerebral HIF-dependent growth factors are
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Fig. 1. Effects of hypoxia (8% O2, 6 h) on
growth (A and B) and the murine growth
hormone (mGH)/insulin-like growth fac-
tor-1 (mIGF-1) axis (C) in neonatal mice
after a regeneration period of 3 and 7 days,
respectively. A and B: data are presented as
box-and-whisker plots. Boxes and lines
across the boxes represent the interquartile
range and median. Whiskers indicate mini-
mum and maximum value, n � 8 per group.
C: quantification of plasma concentrations
of mGH and mIGF-1 in relation to total
plasma protein levels (n � 5 per group)
upon 7 days of regeneration. H, hypoxia; N,
normoxia; VT, vehicle-treated; *P � 0.05;
**P � 0.01; ***P � 0.001.
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activated at the level of gene expression beyond the period of
acute hypoxia in response to rhGH treatment, and this is
associated with diminished cerebral apoptosis. These cy-
totrophic factors include IGF-1, IGF-2, IGFBP-2, and EPO,
which are believed to promote neuroprotective effects in acute
global hypoxia of the neonatal brain. This specific transcrip-
tional response of the developing mouse brain may implicate
future neuroprotective targets.

Among the endogenous adaptive mechanisms to hypoxia,
the somatotrophic axis has been characterized as a crucial
system during physiological fetal and perinatal development
modifying growth, metabolic homeostasis, and cerebral matu-
rational processes (37, 40). Here, we demonstrated early post-
natal growth restriction associated with a disturbed mGH/
IGF-1 axis and brain-specific alterations of growth factor
expression in neonatal mice as a result of acute systemic
hypoxia.

Weight loss and restricted weight and growth development
are well-described observations of several rodent models of
perinatal HI (20, 35, 42), highlighting the role of oxygen
maintenance and energy homeostasis as a crucial prerequisite
for physiological postnatal development. Rodent studies of risk
factors for intrauterine hypoxia have mostly investigated ef-
fects of late-gestational hypoxia when exposure of pregnant
mice to hypoxia of 8–12% oxygen (for 3 days or more) leads
to fetal growth restriction. Significant differences of more than
22% in the birth weight of pups compared with controls have

been reported (34, 35, 42). Using an established murine model
of perinatal systemic hypoxia (44), here we showed that
postnatal exposure to severe acute systemic hypoxia (without
experimental ischemia) led to postnatal growth restriction and
decreased mGH and mIGF-1 plasma levels, as assessed at the
end of the first postnatal week. Thus even short-term exposure
to severe hypoxia (8% O2 for 6 h) has the potential to induce
significant growth restriction without altering the brain-to-
body weight ratio. In accordance, Kartal et al. (20) recently
demonstrated a marked decrease in growth and serum levels of
GH and IGF-1 in neonatal rats during acute (24 h postisch-
emia) and subacute (15 days postischemia) periods of HI,
mimicking perinatal sublethal HI (unilateral carotid artery
ligation, followed by exposure to hypoxia of 8% O2 for 2 h).
However, the regulatory mechanisms are not well understood.
Transient delay of GH/IGF-1 regulation (28), hypoxia-in-
duced inhibition of GH release (20), or disturbances of the
somatotrophic axis due to oxygen-related epigenetic
changes (17, 32) have been proposed as potential underlying
mechanisms. Human studies of the consequences of postna-
tal acute hypoxia on the regulation of the GH/IGF-1 system
are sparse; however, reduced IGF action and increased
IGF-1R transcriptional activity during acute hypoxia seem
to be of clinical relevance (10).

Focusing on long-term effects of rhGH treatment during
postnatal development of hypoxia-exposed neonatal mice, we
observed compensatory effects of rhGH on hypoxia-induced
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temic hypoxia (8% O2, 6 h) at P7. A and B:
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growth restriction, as well as on alterations of the mGH/IGF-1
axis after a 7-day recovery period. These adaptive effects were
most significant in response to high-dose treatment. Compara-
ble data from the literature are limited. From experiments using
knockout mouse mutants that lack the GHR or IGF-1, it is
evident that GH and IGF-1 promote postnatal growth by both
independent and common functions (28). Moreover, develop-
mentally regulated mechanisms must be considered. Recent
investigations in human newborns (31) demonstrated an absent
response of fibroblasts to rhGH after 16 and 24 h of rhGH
stimulation, in contrast to GH effects in prepubertal boys. The
authors of that study suggested a reduction in GHR content and
lack of phosphorylation of Janus kinase-2 (JAK2) and signal
transducers and activators of transcription 5 (STAT5) in re-
sponse to rhGH, as well as impairment of STAT5 dimer
formation, as possible explanations for the age-dependent dif-
ferences in IGF-1 expression. Taken together, the present data
indicate that rhGH treatment may compensate for functional,

hypoxia-induced disturbances of the GH/IGF-1 axis during the
early neonatal period in a dose-dependent manner.

Cerebral expression and functions of GH, IGF-1, and IGF-2
and their receptors are developmentally regulated. They cru-
cially modify neurogenesis, differentiation of neurons, astro-
cytes and oligodendroglia, synaptic maturation, and cell sur-
vival in the developing brain (1, 5, 8, 13, 37). Moreover,
cerebral GH and IGF regulation is highly O2 sensitive (35, 39,
50). In response to acute global hypoxia of the developing
mouse brain, we found a significant longer-term downregula-
tion of mRNA expression of IGF-2, which is produced primar-
ily in cells of the choroid plexus and meninges, and activates
oligodendrocyte progenitor cells (13, 50). In comparison,
mRNA levels of IGF-1 were upregulated compared with con-
trols, whereas IGF receptors and binding proteins were un-
changed. This might indicate a high O2 sensitivity of IGF-2
and IGF-1 to global cerebral hypoxia. In contrast, chronic
hypoxia (10% O2, 12 h) induced marked increases in GH,
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the regeneration period of 7 days. *P � 0.05.

Table 2. Effects of systemic hypoxia on gene expression of growth factor receptors and binding proteins in developing
mouse brain in a 7-day regeneration period

mRNA Ratio*

Nontreated Vehicle Treated rhGH 1,000 �g/kg rhGH 4,000 �g/kg

Normoxia Hypoxia Normoxia Hypoxia P† Normoxia Hypoxia Normoxia Hypoxia P‡

IGF-1R 1.386 	 0.135 1.547 	 0.133 1.410 	 0.087 1.031 	 0.042 0.0675 1.551 	 0.134 1.095 	 0.102 1.119 	 0.047 1.178 	 0.173 0.0513
IGF-2R 0.203 	 0.027 0.171 	 0.020 0.168 	 0.017 0.189 	 0.014 0.5001 0.201 	 0.017 0.188 	 0.024 0.208 	 0.018 0.299 	 0.082 0.1430
IGFBP-2 0.581 	 0.045 0.542 	 0.029 0.547 	 0.053 0.535 	 0.043 0.1753 0.484 	 0.039 0.462 	 0.047 0.500 	 0.032 0.819 	 0.139 0.0440
IGFBP-3 0.685 	 0.079 0.561 	 0.053 0.541 	 0.047 0.657 	 0.078 0.1643 0.630 	 0.064 0.874 	 0.085 0.632 	 0.079 0.698 	 0.107 0.1878
IGFBP-4 1.080 	 0.073 0.972 	 0.063 0.978 	 0.017 0.969 	 0.023 0.3058 1.050 	 0.034 0.932 	 0.047 0.994 	 0.044 0.939 	 0.013 0.1538
EPO-R 1.279 	 0.214 1.184 	 0.054 1.469 	 0.186 1.301 	 0.232 0.9726 1.275 	 0.128 1.367 	 0.135 1.284 	 0.057 1.441 	 0.149 0.7740

*Values are means 	 SEM, n � 5 per group, and shown in relation to �-actin mRNA concentrations. †Differences between normoxia vs. hypoxia and
‡between controls vs. rhGH treatment, assessed by ordinary two-way ANOVA.
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IGF-1, and GHR mRNA levels in the hippocampus of neonatal
rats (P7) (25), indicating a major impact of the HI model used.
In addition, because IGF and IGF receptor expression during
early stages of brain maturation shows prominent region- and
cell type-specific patterns (13, 15), we cannot draw final
conclusions from the present data. Moreover, we are well
aware that other growth factors, such as BDNF, EPO, and
FGF-2, which also underlie developmental regulation, may
alter the biological activity of IGFs at this early developmental
stage (1, 2, 10, 26, 50, 51).

Neuroprotective properties of rhGH in HI brain injury have
been demonstrated by several studies in adult and neonatal
rodents including HI and traumatic brain injury models (16, 25,
39, 50). RhGH has been shown to have several neuroprotective
functions including upregulating the expression of the GHR
gene transcript in juvenile rat brains (24), maintaining the
blood-brain-barrier integrity in HI brain injury via induction of
IGF-1 and IGF-2 expression (7) promoting angiogenesis (19)
and proliferation of neuronal progenitors (49). These mecha-
nisms have been suggested to explain amelioration of HI-

induced cerebral apoptosis in adult (8, 12) and neonatal rodent
stroke in response to rhGH (16, 25, 39). Here, we demonstrated
that rhGH diminished apoptotic cell death in the developing
mouse brain exposed to acute global hypoxia after a 7-day
regeneration period. The protective effects were prominent in
brain regions that are highly vulnerable to hypoxia; namely, the
developing hippocampus and SVZ. Of special interest, HIF-
regulated cerebral growth factors IGF-1, IGF-2, IGFBP-2, and
EPO were transcriptionally upregulated by high-dose rhGH
therapy, indicating induction of prolonged activity of endoge-
nous neurotrophic systems. This is in agreement with obser-
vations in neonatal rats (P7) exposed to chronic hypoxia (10%
O2, 12 h) (25) in which rhGH at a dose of 50 �g/kg signifi-
cantly increased EPO, IGF-1, and VEGF mRNA levels in the
hippocampus. These authors also reported lower hippocampal
expression of cleaved caspase-3 compared with controls, con-
firming antiapoptotic effects of rhGH. However, the specific
underlying mechanisms remain to be elucidated. Cerebral
IGF-1 and IGF-2 have been shown to diminish secretion and
activity of proinflammatory cytokines and iNOS in a paracrine
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manner (7, 37, 39). They stimulate antiapoptotic mechanisms
via the PI3K-AKT pathway, including inactivation of proteins
of the Bcl-2 family such as Bad and Bax, and glycogen
synthase 3 kinase (GS3K) (13, 15, 27, 39). Intranasally admin-
istered IGF-1, in combination with therapeutic hypothermia,
was found to protect the developing rat brain from ischemic
injury (22, 25). However, translational controlled studies in
newborns are lacking. The availability of IGF-1R seems to be
an important prerequisite for the neuroprotective functions of
IGF-1 and IGF-2 during development (3), as well as in HI
injury of the developing rodent brain (10, 27).

Among IGF binding proteins, we found a significant upregu-
lation of IGFBP-2 mRNA levels after high-dose rhGH treat-
ment. Generally, IGFBP-2 is the most abundant IGF binding
protein in the developing brain, secreted by astroglia and
choroid plexus epithelial cells and widely expressed in the
neocortex, hippocampus, and cerebellum (14). Relating to
elevated cerebral IGF-1 and IGF-2 expression, as demonstrated
here, transcriptional upregulation of IGFBP-2 may further
increase biological activity and receptor binding of IGFs (13,
14, 36). This might contribute to antiapoptotic effects, as

suggested by our data, and to promote oligodendrogenesis (14,
50) and vasculogenesis (19, 33).

Endogenous EPO as a crucial hematopoietic as well as
neurotrophic and neuroprotective factor is mainly regulated by
HIF-2 (38). The present data demonstrate a significant upregu-
lation of EPO mRNA levels in response to high-dose rhGH
treatment in the developing mouse brain. In contrast to the
short-term activation of endogenous EPO in response to hyp-
oxia (38), rhGH treatment led to significant longer-term tran-
scriptional upregulation of EPO levels. This implicates that
rhGH induces longer-term regenerative EPO effects beyond its
acute protective function. Antiapoptotic, anti-inflammatory,
antiexcitotoxic, and angiogenic effects of EPO have been
characterized (18, 43, 48). In addition, specific protective
effects on several cell types, including neurons, oligodendro-
glia, astrocytes, and microglial cells have been described (18,
43). In line with the present data, EPO and its receptor is
widely expressed in the developing brain from an early matu-
rational stage (38, 48). We hypothesize, from our data, that
prolonged activation of endogenous EPO by rhGH promotes
brain regeneration and longer-term repair after hypoxic brain
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injury. Because EPO-R is activated at late stages of brain
hypoxia, observations of the neuroprotective action of EPO via
the homodimer EPO-R in acute HI brain injury are controver-
sial (21, 43, 48, 52). The persisting upregulation of EPO via
rhGH beyond the acute hypoxia period, as demonstrated by our
data, could lead to synergistic modes of action. Our ongoing
studies focus on the potential additive effects of rhGH and
rhEPO in hypoxic injury of the developing brain.

Perspectives and Significance

The present study confirms that rhGH stimulates compen-
satory mechanisms to restore hypoxia-induced disturbances of
growth, and the GH/IGF-1 axis during early postnatal devel-
opment in a dose dependent manner. Furthermore, this study
demonstrates longer-term cerebral activation of the endoge-
nous neuroprotective growth factors IGF-1, IGF-2, IGFBP-2,
and EPO in response to high-dose rhGH, which are suggested
to mediate the observed antiapoptotic effects of rhGH in acute
global hypoxia of the developing brain. Furthermore, the pres-
ent promising observations provide basic information for fur-
ther analysis of cell type- and age-specific mechanisms modi-
fied by the GH/IGF axis, and the paracrine effects of growth
factors during early development. Further investigation could
elucidate the specific role of rhGH for future neuroprotective
synergistic treatment options in perinatal HI brain injury.
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