1	Clinical	characteristics	and	management	of	growth	hormone
---	----------	-----------------	-----	------------	----	--------	---------

2 excess in patients with McCune-Albright syndrome

- ³ Yong Yao^{*1}, Yang Liu^{*1}, Linjie Wang², Kan Deng¹, Hongbo Yang², Lin Lu², Feng
- 4 Feng³, Bing Xing¹, Hui You³, Zimeng Jin², Renzhi Wang¹, Hui Pan², Shi Chen²,
- 5 Huijuan Zhu^{#2}
- 6 *Yong Yao and Yang Liu made equal contributions to this article
- ⁷ ¹Department of Neurosurgery ²Key Laboratory of Endocrinology of National Health
- 8 and Family Planning Commission, Department of Endocrinology ³Department of
- 9 Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical
- 10 Science, Peking Union Medical College, Beijing 100730, China
- 11 [#]Corresponding author: Huijuan Zhu
- 12 Key Laboratory of Endocrinology of National Health and Family Planning
- 13 Commission, Department of Endocrinology, Peking Union Medical College Hospital,
- 14 Chinese Academy of Medical Science, Peking Union Medical College
- 15 No.1 Shuaifuyuan, Dongcheng, Beijing, China, 100730
- 16 Email: shengxin2004@163.com
- 17 Short title: McCune-Albright syndrome with GH excess
- 18 Keywords: McCune-Albright syndrome, growth hormone excess, pituitary adenoma,
- 19 trans-sphenoidal tumor excision
- 20 Word count: 2895

23	Objective: McCune-Albright syndrome (MAS) is a sporadic, postzygotic disease
24	presenting with fibrous dysplasia, cafe-au-lait spots and multiple endocrinopathies.
25	Growth hormone (GH) excess is an uncommon but potentially severe complication of
26	MAS. This study aims to describe the clinical manifestations of GH excess in the
27	context of MAS, and analyze the responses of these patients to treatments.
28	Design: Retrospective clinical study.
29	Methods: Clinical data from 52 MAS patients were analyzed. Serum GH and IGF1
30	levels, as well as nadir GH levels after an Oral Glucose Tolerance Test and alkaline
31	phosphatase (ALP) levels were determined before and after the treatment.
32	Results: In total, 13 MAS patients (25%) had the complication of GH excess,
33	including 10 males (76.9%). Among them, all had FD, and 6 patients had sphenoidal
34	bone involvement. Visual deficits were present in 8 patients, and hearing deficits were
35	present in 5. Olfactory dysfunction was observed in 3 patients. Evident pituitary
36	adenomas were confirmed in 9 patients by MRI. These patients underwent surgery
37	with or without pretreatment of long-acting somatostatin analogue octreotide, and 6
38	achieved complete remission. The serum ALP levels decreased significantly after
39	treatment for GH excess.
40	Conclusions: MAS with GH excess is more common in male patients. GH excess can
41	lead to more severe skeletal lesions in MAS patients that involve more of the
42	craniofacial bones. Complete trans-sphenoidal complete tumor excision with
43	neuronavigational guidance is effective and could lower ALP levels. LAR is

- 44 recommended as a preoperative treatment and when patients fail to achieve complete
- 45 remission after surgery.
- 46
- 47 Keywords: McCune-Albright syndrome, growth hormone excess, pituitary adenoma,
- 48 trans-sphenoidal tumor excision
- 49

50 Introduction

51	McCune-Albright syndrome (MAS, OMIM 174800) is a sporadic, postzygotic
52	disease with an estimated prevalence of between $1/100,000$ and $1/1,000,000^{1}$. It was
53	first described as a clinical triad of polyostotic/monoostotic fibrous dysplasia (FD),
54	cafe'-au-lait pigmented skin lesions, and precocious puberty by McCune ² and
55	separately by Albright ³ in the 1930s. Other endocrinopathies in the context of MAS
56	were subsequently identified, including hyperthyroidism ⁴ , hypercortisolism ⁵ , pituitary
57	adenomas secreting growth hormone (GH) and/or prolactin (PRL) ^{6,7} , and
58	hypophosphatemic osteomalacia ⁸ . GH excess, which is present in 10%-20% ⁹ of MAS
59	cases, is a serious endocrine complication associated with craniofacial morbidities,
60	including visual and hearing deficits, as well as cardiovascular disease and metabolic
61	syndrome. However, the treatment of GH excess in MAS patients remains
62	challenging. Neurosurgical excision is often difficult due to severe fibrous dysplasia
63	at the base of the skull ¹⁰ , and radiotherapy (RT) may precipitate bone sarcomatous
64	transformation ¹¹ . To date, several cases have been reported involving treatment for
65	GH excess in MAS, but only a few achieved satisfactory outcomes. The aim of this
66	study is to describe the clinical manifestations, treatment, and outcomes of patients
67	with MAS patients complicated by GH excess.
68	
69	Subjects and Methods

70 Patients

All of the studies were performed according to the rules of the hospital medical ethics

72	committee. Informed consent was obtained in accordance with the institutional
73	guidelines.
74	
75	Clinical data from 52 MAS patients at Peking Union Medical College Hospital from
76	November 1991 to April 2016 were retrospectively analyzed, and those with the
77	complication of GH excess were followed up.
78	
79	Diagnosis of MAS and GH excess
80	A diagnosis of MAS was made when at least two of the following cardinal features
81	were present: café-au-lait skin pigmentation, polyostotic/monostotic bone fibrous
82	dysplasia (FD) and hyperfunctioning endocrinopathies. Technetium whole body bone
83	scanning, CT scans and X-ray imaging were used to confirm bone lesions. The serum
84	alkaline phosphatase (ALP) levels were assessed. Visual, hearing and olfactory
85	functions were evaluated by the otolaryngology and ophthalmology consultation
86	group. A T&T Olfactometer was used for Standardized Olfactory Test. Endocrine
87	hormone levels were assessed to identify endocrinopathies associated with MAS.
88	
89	The diagnosis of GH excess was based on clinical symptoms and confirmed by high
90	levels of GH (IMMULITE 2000 GH analyzer, Siemens Healthcare Diagnostic Inc.),
91	age- and sex-adjusted insulin-like growth factor1 levels (IGF1, IMMULITE 2000
92	IGF1 analyzer, Siemens Healthcare Diagnostic Inc.), and nadir GH levels after an oral
93	glucose tolerance test (OGTT) with GH levels that were greater than 1.0 ng/ml. The

94	nadir GH levels of each patient were recorded at baseline and after surgery. The IGF1
95	Z-scores were adjusted for age and gender according to the normal values of serum
96	IGF1 (the 5 th and 95 th percentiles), and Z-scores greater than 2.0 were considered
97	elevated.
98	
99	Pituitary magnetic resonance imaging (MRI) was used to identify compression
100	associated with pituitary tumors. All of the patients underwent blood pressure testing,
101	thyroid ultrasound, echocardiograms and OGTT, and co-morbidities including
102	diabetes mellitus, hypertension and heart disease were noted.
103	
104	Pathological Analysis
105	Pituitary adenoma tissues were surgically removed, fixed in 10% formaldehyde,
106	embedded in paraffin, and cut into 3-µm-thick sections for immunohistochemical
107	staining. Immunohistochemistry was performed using the avidin-biotin-peroxidase
108	method. The sections were incubated with the following antisera: anti-GH, anti-PRL,
109	anti-adrenocorticotropic hormone (Dako, Carpinteria, CA, USA; A0570, A0569,
110	A0571), anti-thyroid-stimulating hormone, anti-follicle-stimulating hormone, and
111	anti-luteinizing hormone (Long Island Biotec. Co., Ltd, Shanghai, China; M-0497,
112	M-0255, M-0368).

114 Treatment

115 Nine patients underwent navigation-assisted transsphenoidal pituitary tumor

116	resectioning. The serum levels of IGF1, PRL and ALP, as well as nadir GH levels
117	after OGTT, were evaluated after treatment and during follow-up.
118	
119	Remission of acromegaly was assessed based on the normalization of GH/IGF1 levels.
120	The criteria for disease control were a normal IGF1 level for age and gender (Z
121	score<2.0) and an OGTT-suppressed GH level of no more than 1.0 ng/mL.
122	
123	The literature regarding treatments for MAS patients with GH excess from 2001 to
124	2015 was reviewed, and the patients who underwent transsphenoid surgery was noted.
125	
126	Statistics Analysis
126 127	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data.
126 127 128	Statistics AnalysisDescriptive statistics were used to characterize the demographic and laboratory data.The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The
126 127 128 129	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data. The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The height and ALP level Z-scores were based on reported distributions of height/ALP
126 127 128 129 130	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data. The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The height and ALP level Z-scores were based on reported distributions of height/ALP levels in Chinese population ¹³⁻¹⁵ . T-tests were performed to make comparisons
126 127 128 129 130 131	Statistics AnalysisDescriptive statistics were used to characterize the demographic and laboratory data.The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . Theheight and ALP level Z-scores were based on reported distributions of height/ALPlevels in Chinese population ¹³⁻¹⁵ . T-tests were performed to make comparisonsbetween MAS patients with GH excess and MAS patients without GH excess, as well
126 127 128 129 130 131 132	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data. The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The height and ALP level Z-scores were based on reported distributions of height/ALP levels in Chinese population ¹³⁻¹⁵ . T-tests were performed to make comparisons between MAS patients with GH excess and MAS patients without GH excess, as well as between GH patients before and after surgery. A P<0.05 was regarded as
126 127 128 129 130 131 132 133	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data. The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The height and ALP level Z-scores were based on reported distributions of height/ALP levels in Chinese population ¹³⁻¹⁵ . T-tests were performed to make comparisons between MAS patients with GH excess and MAS patients without GH excess, as well as between GH patients before and after surgery. A P<0.05 was regarded as statistically significant. The analyses were performed using SPSS 15.0 and GraphPad
126 127 128 129 130 131 132 133 134	Statistics Analysis Descriptive statistics were used to characterize the demographic and laboratory data. The IGF1 Z-scores were calculated according to an equation described in Ref ¹² . The height and ALP level Z-scores were based on reported distributions of height/ALP levels in Chinese population ¹³⁻¹⁵ . T-tests were performed to make comparisons between MAS patients with GH excess and MAS patients without GH excess, as well as between GH patients before and after surgery. A P<0.05 was regarded as statistically significant. The analyses were performed using SPSS 15.0 and GraphPad Prism Version 6 (GraphPad Software Inc., San Diego, CA).

136 **Results**

137 Clinical Characteristics

138	Thirteen patients (25%) with GH excess were identified among 52 MAS patients
139	(mean age at diagnosis of MAS: 27.5 \pm 13.4 yr.), including ten males (76.9%) and
140	three females. The onset of MAS symptoms occurred at 3.3 ± 6.2 years of age, and the
141	mean age of diagnosis of GH excess was 24.2 ± 11.2 years. The principal clinical
142	characteristics, endocrine abnormalities and MRI features are listed in Table 1. All of
143	the patients presented with FD. Craniofacial bones were involved in all cases, and the
144	sphenoidal bone was involved in 46.1% of cases. Appendicular bones and axial bones
145	were both involved in 46.1% of the patients. Six of the patients who had surgery
146	(patient 2,3,7,8,10, and 11) had FD affecting the sphenoid. Visual field deficits
147	occurred in eight patients (owing to optic canal stenosis in six), FD-related hearing
148	deficits were observed in five, and olfactory dysfunction was present in three. The
149	ALP z-scores of the MAS patients with GH excess were higher than those without
150	GH excess (Fig. 1B), and all except one patient had cafe'-au-lait pigmented skin.
151	Peripheral precocious puberty was observed in patients 2 and 12. Pituitary adenomas
152	were confirmed by MRI in nine patients(69.2%), seven of which were
153	macroadenomas (maximum diameter>1.0 cm) and two of which were microadenoma
154	(maximum diameter \leq 1.0 cm). Six patients had the complication of PRL
155	hypersecretion. Thyroid involvement was observed in four patients, including primary
156	hyperthyroidism in two patients and abnormalities of the thyroid gland based on
157	ultrasound without frank hyperthyroidism in two patients (total: 30.8%). Acromegalic
158	cardiopathies were observed in three patients, including left ventricular hypertrophy
159	(LVH), atrial or aortic enlargement, and pericardial effusion. Four patients had

- 160 impaired glucose tolerance (IGT), and two patients were hypertensive.
- 161

162	Thirty-nine of the MAS patients did not have the complication of GH excess (mean
163	age at diagnosis of MAS, 13.8 ± 9.6 years), and 28.2% of these patients were male.
164	There were no significant differences in age of diagnosis between the patients with
165	and without GH excess. FD occurred in 76.9% of the MAS patients without GH
166	excess. Among them, only three patients were diagnosed with conductive hearing loss
167	and two with visual deficits due to a narrowing of the auditory/optic canals, while
168	none presented with hyposmia. Of the 22 cases with complete records, craniofacial
169	bones were involved in 81.2% of the cases, and the sphenoidal bone was involved in
170	only 15.4%. Appendicular bones and axial bones were involved in 87.5% and 56.2%
171	of the cases, respectively. Twenty-three patients (59.0%) underwent precocious
172	puberty (PP). Two of the patients had primary hyperthyroidism, and three had thyroid
173	nodules without abnormal thyroid function (total: 22.7%).
174	
175	Treatment Outcome
176	Four of the patients without definitive radiographic evidence of pituitary adenomas
177	did not undergo surgery, and the GH excess was not controlled at the time of
178	discharge. The remaining nine patients underwent navigation-assisted transsphenoidal
179	pituitary tumor resection. The pathology showed negative margins, and the
180	immunohistochemical analysis confirmed pure GH ($n = 3$), mixed GH-PRL ($n = 5$)
181	and mixed GH-PRL-LH (n=1) adenomas. One of the nine patients had received

182	gamma knife treatment for his tumor at another hospital prior to the surgery, and his
183	symptoms of GH excess reoccurred. Notably, he developed osteosarcoma at the
184	pterygopalatine fossa during the postoperative follow-up. Two of the patients had
185	been injected with 20 mg of the long-acting somatostatin analogue octreotide (LAR)
186	(Sandostatin LAR, Novartis) once a month for 3-4 months before the surgery.
187	However, no significant tumor shrinkage was observed by MRI. One patient had
188	taken LAR and then bromocriptine for 10 years before he underwent the surgery, but
189	the GH excess was not controlled. One patient was treated with surgery followed by
190	LAR.
191	
192	The follow-up time ranged from 0.3 to 9.6 years. Total tumor excision was achieved
193	in all of the patients, as confirmed by postsurgical MRI. No additional pituitary
194	deficiencies were found post-surgically. Six patients achieved complete remission,
195	with a reduction in GH/IGH-1 to normal levels. Meanwhile, three patients partially
196	responded, and their GH levels were controlled by LAR postoperatively (Table 2).
197	The serum ALP z-scores decreased significantly after remission of GH excess
198	(~26.3%, p<0.001)(Fig. 1A).
199	
200	Previous reports of treatments for GH excess in MAS patients and their outcomes are
201	summarized in Table 3. Of the patients who underwent navigated transsphenoidal
202	surgery without preoperative medication or with ineffective medication, 2 out of 7
203	achieved complete remission after surgical excision alone or followed by

204	post-operative medication/radiotherapy, and 5 out 7 patients partially responded to the
205	treatment.
206	
207	Discussion
208	MAS is caused by a postzygotic-acting mutation in the GNAS1 gene encoding the

alpha chain of the heterotrimeric G protein (Gsa) that is involved in stimulating the

adenyl cyclase-cAMP pathway ^{16, 17}. However, the pathophysiology of GH excess in

211 MAS at the cellular and organ level is not clearly understood. The results of this study

shows that 26.4% of MAS patients had the complication of GH excess, which is in

213 accordance with previous reports $^{6, 7, 18}$.

214

215 GH excess in the context of MAS has its own characteristics. In this study, we found 216 that the MAS patients with GH excess were diagnosed at younger ages (mean age of onset, 24.2 years) than patients with classical acromegaly/gigantism (mean age of 217 diagnosis, 48.7 years) 19 , which is consistent with previous reports 20 . Furthermore, 218 76.9% of male MAS patients suffered from GH excess, whereas the percentage of 219 males with classic acromegaly/gigantism has been reported to be lower $(52.8\%)^{19}$. 220 GH excess is associated with growth acceleration and/or facial dysmorphism. 221 222 However, growth acceleration may be obscured in MAS patients with PP, and facial dysmorphism is often difficult to assess due to craniofacial FD. Of the eight patients 223 with an adolescent onset of GH excess in this study, four presented with accelerated 224 225 growth, and three of these patients exhibited PP. Enlarged feet and hands offer

Page 12 of 29

226	important clues for acromegaly. Co-secretion of PRL was observed in 46.1% (6/13) of
227	MAS patients with GH excess, which is in accordance with the consensus that the
228	prevalence of hyperprolactinemia is higher in patients with MAS than in those with
229	classical acromegaly (71-92% vs. 30-40%) ^{7, 12, 21} .
230	
231	In addition, there are several important differences between MAS with GH excess and
232	MAS without GH excess. A greater proportion of the GH excess patients were male,
233	and GH excess may aggravate the skeletal lesions associated with MAS. In this study,
234	FD was presented in 76.9% of the MAS patients without GH excess compared with
235	100% of the patients with GH excess. Despite the fact that craniofacial bones were
236	commonly involved in both cases, FD affecting the sphenoid bone was observed more
237	often in patients with GH excess (46.1%) compared to those without (15.4%). In
238	addition, the involvement of the appendicular and axial bones was less commonly
239	observed in patients with GH excess. Therefore, we should prescribe systematic
240	hormone tests and pituitary contrast-enhanced MRIs for MAS patients with confirmed
241	sphenoidal bone damage or the absence of extracranial bone involvement to rule out
242	GH excess and pituitary adenomas. Higher concentrations of GH accelerate
243	craniofacial FD and increase the risk of olfactory, hearing and vision loss ¹² . We
244	found that hyposmia, sensorineural hearing loss and visual deficits were less common
245	in the MAS patients without GH excess (with vs. without GH excess: 38.4% vs.
246	12.8%). Although the mass occupying effects of the GH macroadenomas could in part
247	explain the visual deficits, the visual problems were more frequently related to a

248	narrowing of the optic canal (75%), which is consistent with previous reports ²⁰ . Bone
249	turnover is increased in acromegaly patients who have significantly higher levels of
250	markers of both bone formation and resorption ²² . These biomarkers including ALP
251	often correlate with the extent and severity of skeletal involvement in MAS ²³ . As
252	shown in the result section, serum ALP levels decreased significantly when the GH
253	excess was controlled, indicating that treatment for GH excess may improve FD.
254	There were significant differences in the ALP levels between MAS patients with GH
255	excess and MAS patients without GH excess (Fig. 1), and further studies are
256	warranted regarding the relationship between GH and skeletal lesions. Moreover, GH
257	excess is associated with glucose intolerance, hypertension and acromegalic
258	cardiomyopathy, which might increase the morbidity and mortality ²⁴ .
259	
260	Three of the patients did not exhibit any symptoms of GH excess during thorough
261	examinations after the diagnosis of MAS. However, hormone tests revealed elevated
262	GH levels, and an MRI confirmed the presence of a pituitary adenoma in one of them.
263	Therefore, systematic hormone testing and pituitary contrast-enhanced MRI may be
264	beneficial for MAS patients. Previous reports have indicated that pituitary adenomas
265	tend to be absent or smaller in MAS patients with GH excess ²⁵ , and widespread and
266	diffuse pituitary gland disease has been identified even in patients who appeared to
267	
	have discrete adenomas on MRI ²⁶ . However, pituitary adenomas were confirmed
268	have discrete adenomas on MRI ²⁶ . However, pituitary adenomas were confirmed pathologically in 69.2% of the patients in this study, and seven were macroadenomas.

270 biases due to the small sample sizes and single-center studies.

271

272	Current treatments for GH excess in MAS include radiotherapy, surgery and
273	medication (somatostatin receptor ligands, the dopamine agonist Cabergoline, and the
274	GH receptor antagonist Pegvisomant). Although a review published in 2014
275	suggested that surgical excision might not be beneficial for MAS patients with
276	pituitary adenomas because skeletal lesions usually makes the operation more
277	challenging ²⁰ , considerable technical progress has been made in the past few years, so
278	we propose that transsphenoidal excision with neuronavigational guidance might be a
279	good choice for treatment. As reviewed in Table 3, 2 out of 7 of the previously
280	published cases of patients who underwent transsphenoidal surgery without
281	preoperative medication or with ineffective medication achieved complete remission
282	after surgical excision alone or when followed by post-operative
283	medication/radiotherapy, and 5 out of 7 patients had a partial response. Moreover, in
284	this study, 6 out of 9 patients who underwent navigation-assisted transsphenoidal
285	pituitary adenomectomy achieved complete remission according to endocrinological
286	criteria. Notably, 4 of the 6 patients had FD affecting the sphenoid. Among the
287	patients who underwent surgery alone, the complete remission rate was 75% (3/4),
288	which is consistent with the reported rate for classic acromegaly patients $(74\%)^{27}$.
289	Individual differences among patients, improvements in neurosurgical techniques and
290	the experience of the surgeons may explain different remission rates.
291	

292	Treatment with medication is also of vast value. Among the cases reviewed in the
293	literature, 46 patients took medication alone, including octreotide, LAR, cabergoline
294	(CAB, a dopamine agonist), pegvisomant (a GH receptor antagonist), and a
295	combination of above. The symptoms of 22 patients were completely alleviated by
296	LAR treatment alone or when combined with other drugs. LAR, as the first-line drug
297	for GH excess, was able to normalize IGF1 levels in approximately 50% of the
298	patients and result in a partial response in the rest. The ability of pegvisomant to
299	normalize IGF1 levels is similar to LAR, but it is not as effective at treating other GH
300	excess-related symptoms such as fatigue and sweating ²⁸ . Patients frequently exhibit
301	inadequate responses to CAB, and the administration of medication before and after
302	surgery is favorable for complete relief. Considering the potential for tumor shrinkage
303	and the down-regulation of GH/IGF1 levels by somatostatin analogues, preoperative
304	treatment of acromegaly patients with these drugs reduces comorbidity and facilitates
305	adenoma removal ^{27, 29} . Two of the patients in this study received preoperative LAR.
306	However, no tumor shrinkage was observed. Therefore, well-designed studies are
307	required to further assess the role of preoperative therapy.
308	
309	Radiotherapy is considered as the last choice due to the risk of bone sarcomatous

- transformation. MAS has been shown to be associated with the malignant
- transformation of FD, as well as malignancies of thyroid and breast³⁰. Liu et al³¹
- reported a case involving a MAS patient who was treated with radiation therapy and
- 313 later developed undifferentiated chondrosarcoma of the malignant fibrous

314	histiocytoma subtype in the sellar region afterwards. In this study, it is highly
315	suspected that the osteosarcoma of the pterygopalatine fossa that patient 8 developed
316	was related to the radiotherapy. We suggest that radiotherapy be used only when
317	surgery is not possible and medication fails.
318	
319	It should be noted that this study was limited by the inherent drawbacks of
320	retrospective analyses. Small sample sizes were also a major problem due to the low
321	incidence rate of MAS. These issues could be partially resolved by delicate statistical
322	analysis and a supportive literature reviewed. Another limitation was the lack of IGF1
323	data for patient 5 as the GH nadir of this patient was just below the cutoff of 1ng/mL.
324	In addition, ALP levels were the only biomarker for skeletal lesions analyzed, so
325	further exploration is warranted.
326	
327	Conclusion

- 328 MAS with GH excess is more common in male patients, and GH excess could lead to
- 329 more severe skeletal lesions and more involvement of the craniofacial bones.
- 330 Complete trans-sphenoidal tumor excision with neuronavigational guidance is
- effective and could lower ALP levels, and LAR is recommended as both a
- 332 preoperative treatment and for when patients fail to achieve complete remission after

333 surgery.

334

335 **Declarations of interest**

GenSci 金赛药业

336	There is no conflict of interest that could be perceived as prejudicing the impartiality										
337	of the research reported.										
338											
339	Fund	ling									
340	Natior	nal Key Program of Clinical Science (WBYZ2011-873)									
341											
342	Refe	rences									
343	1.	Dumitrescu CE, Collins MT. McCune-Albright syndrome. Orphanet J Rare Dis 2008 3 12.									
344	2.	DJ. M. Osteitis fibrosa cystica; the case of a nine year old girl who also exhibits precocious									
345		puberty, multiple pigmentation of the skin and hyperthyroidism. Am J Dis Child 1936 52									
346		743-744.									
347	3.	Albright F BA, Hampton AO, Smith P. Syndrome characterized by osteitis fibrosa disseminata,									
348		areas of pigmentation and endocrine dysfunction, with precocious puberty in females: report									
349		of five cases. N Engl J Med 1937 216 727-746.									
350	4.	Mastorakos G, Mitsiades NS, Doufas AG, Koutras DA. Hyperthyroidism in McCune-Albright									
351		syndrome with a review of thyroid abnormalities sixty years after the first report. Thyroid									
352		1997 7 433-439.									
353	5.	Kirk JM, Brain CE, Carson DJ, Hyde JC, Grant DB. Cushing's syndrome caused by nodular									
354		adrenal hyperplasia in children with McCune-Albright syndrome. J Pediatr 1999 134 789-792.									
355	6.	Chanson P, Dib A, Visot A, Derome PJ. McCune-Albright syndrome and acromegaly: clinical									
356		studies and responses to treatment in five cases. Eur J Endocrinol 1994 131 229-234.									
357	7.	Premawardhana LD, Vora JP, Mills R, Scanlon MF. Acromegaly and its treatment in the									
358		McCune-Albright syndrome. Clin Endocrinol (Oxf) 1992 36 605-608.									
359	8.	Lala R, Matarazzo P, Andreo M, Defilippi C, de Sanctis C. Impact of endocrine hyperfunction									
360		and phosphate wasting on bone in McCune-Albright syndrome. J Pediatr Endocrinol Metab									
361		2002 15 Suppl 3 913-920.									
362	9.	Beckers A, Aaltonen LA, Daly AF, Karhu A. Familial isolated pituitary adenomas (FIPA) and the									
363		pituitary adenoma predisposition due to mutations in the aryl hydrocarbon receptor									
364		interacting protein (AIP) gene. Endocr Rev 2013 34 239-277.									
365	10.	Madsen H, Borges MT, Kerr JM, Lillehei KO, Kleinschmidt-Demasters BK. McCune-Albright									
366		syndrome: surgical and therapeutic challenges in GH-secreting pituitary adenomas. J									
367		Neurooncol 2011 104 215-224.									
368	11.	Hansen MR, Moffat JC. Osteosarcoma of the Skull Base after Radiation Therapy in a Patient									
369		with McCune-Albright Syndrome: Case Report. Skull Base 2003 13 79-83.									
370	12.	Akintoye SO, Chebli C, Booher S, Feuillan P, Kushner H, Leroith D, Cherman N, Bianco P,									
371		Wientroub S, Robey PG, et al. Characterization of gsp-mediated growth hormone excess in									
372		the context of McCune-Albright syndrome. J Clin Endocrinol Metab 2002 87 5104-5112.									

373 13. Li H, Ji C, Zong X, Zhang Y. Height and weight standardized growth charts for Chhlese children 374 and adolescents aged 0 to 18 years Chin J Pediatr 2009 47. 375 Ji L, Lian L, Sun S, Sun X. 19416 cases of serum alkaline phosphatase activity analysis of 14. 376 healthy adults. Chin J Lab Diagn 2011 15. 377 15. Lu Q, Jia Z. Refenrence values of serum alkaline phosphatase for Chinese children and 378 adolescents aged 0 to 18 years. Lab Med Clin 2009 6. 379 16. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating 380 mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med 1991 381 325 1688-1695. 382 17. Ozcan-Kara P, Mahmoudian B, Erbas B, Erbas T. McCune-Albright syndrome associated with 383 acromegaly and bipolar affective disorder. Eur J Intern Med 2007 18 600-602. 384 18. Collins MT, Singer FR, Eugster E. McCune-Albright syndrome and the extraskeletal 385 manifestations of fibrous dysplasia. Orphanet J Rare Dis 2012 7 Suppl 1 S4. 386 19. Dal J, Feldt-Rasmussen U, Andersen M, Kristensen LO, Laurberg P, Pedersen L, Dekkers OM, 387 Sorensen HT, Jorgensen JO. Acromegaly incidence, prevalence, complications and long-term 388 prognosis: a nationwide cohort study. Eur J Endocrinol 2016 175 181-190. 389 20. Salenave S, Boyce AM, Collins MT, Chanson P. Acromegaly and McCune-Albright syndrome. J 390 Clin Endocrinol Metab 2014 99 1955-1969. 391 21. Abs R, Beckers A, Van de Vyver FL, De Schepper A, Stevenaert A, Hennen G. Acromegaly, 392 multinodular goiter and silent polyostotic fibrous dysplasia. A variant of the McCune-Albright 393 syndrome. J Endocrinol Invest 1990 13 671-675. 394 Scillitani A, Chiodini I, Carnevale V, Giannatempo GM, Frusciante V, Villella M, Pileri M, 22. 395 Guglielmi G, Di Giorgio A, Modoni S, et al. Skeletal involvement in female acromegalic 396 subjects: the effects of growth hormone excess in amenorrheal and menstruating patients. J 397 Bone Miner Res 1997 12 1729-1736. 398 23. Collins MT, Kushner H, Reynolds JC, Chebli C, Kelly MH, Gupta A, Brillante B, Leet AI, 399 Riminucci M, Robey PG, et al. An instrument to measure skeletal burden and predict 400 functional outcome in fibrous dysplasia of bone. J Bone Miner Res 2005 20 219-226. 401 24. Chanson P, Salenave S. Acromegaly. Orphanet J Rare Dis 2008 3 17. 402 25. Ringel MD, Schwindinger WF, Levine MA. Clinical implications of genetic defects in G proteins. 403 The molecular basis of McCune-Albright syndrome and Albright hereditary osteodystrophy. 404 Medicine (Baltimore) 1996 75 171-184. 405 26. Vortmeyer AO, Glasker S, Mehta GU, Abu-Asab MS, Smith JH, Zhuang Z, Collins MT, Oldfield 406 EH. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic 407 patients with McCune-Albright syndrome. J Clin Endocrinol Metab 2012 97 2404-2413. 408 27. Ludecke DK, Abe T. Transsphenoidal microsurgery for newly diagnosed acromegaly: a 409 personal view after more than 1,000 operations. Neuroendocrinology 2006 83 230-239. 410 28. Akintoye SO, Kelly MH, Brillante B, Cherman N, Turner S, Butman JA, Robey PG, Collins MT. 411 Pegvisomant for the treatment of gsp-mediated growth hormone excess in patients with 412 McCune-Albright syndrome. J Clin Endocrinol Metab 2006 91 2960-2966. 413 29. Shen M, Shou X, Wang Y, Zhang Z, Wu J, Mao Y, Li S, Zhao Y. Effect of presurgical long-acting 414 octreotide treatment in acromegaly patients with invasive pituitary macroadenomas: a 415 prospective randomized study. Endocr J 2010 57 1035-1044. 416 30. McCune-Albright syndrome and the extraskeletal manifestations of fibrous dysplasia.

417		Orphanet J Rare Dis 2012.
418	31.	Liu F, Li W, Yao Y, Li G, Yang Y, Dou W, Zhong D, Wang L, Zhu X, Hu H, et al. A case of
419		McCune-Albright syndrome associated with pituitary GH adenoma: therapeutic process and
420		autopsy. J Pediatr Endocrinol Metab 2011 24 283-287.
421	32.	Zumkeller W, Jassoy A, Lebek S, Nagel M. Clinical, endocrinological and radiography features
422		in a child with McCune-Albright syndrome and pituitary adenoma. J Pediatr Endocrinol Metab
423		2001 14 553-559.
424	33.	Bhansali A, Sharma BS, Sreenivasulu P, Singh P, Vashisth RK, Dash RJ. Acromegaly with fibrous
425		dysplasia: McCune-Albright Syndrome clinical studies in 3 cases and brief review of
426		literature. Endocr J 2003 50 793-799.
427	34.	Zacharin M. Paediatric management of endocrine complications in McCune-Albright
428		syndrome. J Pediatr Endocrinol Metab 2005 18 33-41.
429	35.	Sargin H, Gozu H, Bircan R, Sargin M, Avsar M, Ekinci G, Yayla A, Gulec I, Bozbuga M, Cirakoglu
430		B, et al. A case of McCune-Albright syndrome associated with Gs alpha mutation in the bone
431		tissue. Endocr J 2006 53 35-44.
432	36.	Papadopoulou M, Doula S, Kitsios K, Kaltsas T, Kosta K. A boy with McCune-Albright syndrome
433		associated with GH secreting pituitary microadenoma. Clinical findings and response to
434		treatment. Hormones (Athens) 2006 5 205-209.
435	37.	Sang Hun Sung HDY, Ho Sang Shon, Hong Tae Kim, Woo Young Choi, Chang Jin Seo and Joo
436		Hyoung Lee. A Case of McCune-Albright Syndrome with Associated Multiple
437		Endocrinopathies FAU - Sung, Sang Hun FAU - Yoon, Hyun Dae FAU - Shon, Ho Sang FAU - Kim,
438		Hong Tae FAU - Choi, Woo Young FAU - Seo, Chang Jin FAU - Lee, Joo Hyoung. Korean J Intern
439		Med 2007 22 45-50.
440	38.	Tajima T, Tsubaki J, Ishizu K, Jo W, Ishi N, Fujieda K. Case study of a 15-year-old boy with
441		McCune-Albright syndrome combined with pituitary gigantism: effect of octreotide-long
442		acting release (LAR) and cabergoline therapy. <i>Endocr J</i> 2008 55 595-599.
443	39.	Almeida JP, Albuquerque LA, Ferraz CL, Mota I, Gondim J, Ferraz TM. McCune-Albright
444		syndrome and acromegaly: hormonal control with use of cabergoline and long-acting
445		somatostatincase report. Arq Bras Endocrinol Metabol 2009 53 102-106.
446	40.	Baszko-Blaszyk D, Slynko J, Liebert W, Sosnowski P, Sowinski J, Wasko R. Difficulties in
447		diagnosis and treatment of acromegaly in a patient with a McCune-Albright syndrome. A case
448		report and a review of literature. Neuro Endocrinol Lett 2010 31 594-596.
449	41.	Sakayama K, Sugawara Y, Kidani T, Fujibuchi T, Kito K, Tanji N, Nakamura A. Polyostotic fibrous
450		dysplasia with gigantism and huge pelvic tumor: a rare case of McCune-Albright syndrome.
451		Int J Clin Oncol 2011 16 270-274.
452	42.	Natarajan MS, Prabhu K, Chacko G, Rajaratnam S, Chacko AG. Endoscopic transsphenoidal
453		excision of a GH-PRL-secreting pituitary macroadenoma in a patient with McCune-Albright
454		syndrome. <i>Br J Neurosurg</i> 2012 26 104-106.
455	43.	Boyce AM, Glover M, Kelly MH, Brillante BA, Butman JA, Fitzgibbon EJ, Brewer CC, Zalewski
456		CK, Cutler Peck CM, Kim HJ, et al. Optic neuropathy in McCune-Albright syndrome: effects of
457		early diagnosis and treatment of growth hormone excess. J Clin Endocrinol Metab 2013 98
458		E126-134.
459		

Page 20 of 29

Case	Sex	Age at diagnosis A	ge at diagnosis of	Height	FD	SD	PP	Hearing or	VD	Hyper-	Pituitary tumor	GH excess-related
No.		of MAS	GH excess	Z-score				olfactory deficit	factory deficits		(MRI)	complications
1	М	42	42	1.38	Ρ	+	-	-	-	GHH suspected		shin-soft tissue infection of
											diagnosis	the submaxillary
2	F	6	6	7.38	Ρ	+	+	-	Bilateral*	GHH, PH	macro	-
3	Μ	19	19	2.05	Ρ	+	-	external auditor	yunilateral	GHH, PH	macro	LVH
								canal atresia				
4	Μ	36	36	1.72	М	+	-	conductive	unilateral	GHH	macro	HTN, aorta broadening,
								deafness				pericardial effusion, IGT
5	F	27	27	0.55	Ρ	+	-	conductive	bilateral	GHH, PH	macro	IGT
								hearing loss,				
								hyposmia				
6	М	25	25	-0.45	Ρ	+	-	conductive	bilateral	GHH, PH,HT	pituitary	left atrial enlargement, IGT

Table 1. Clinical characteristics of the 13 MAS patients with the complication of GH excess

								deafness			enlargement	
7	F	12	12	2.4	Р	+	-	hyposmia	bilateral	GHH	micro	-
8	М	35	33	1.72	М	-	-	hyposmia	unilateral	GHH, PH	macro	-
9	М	46	46	3.05	Ρ	+	+	-	-	GHH	micro	HTN, DM
10	М	43	26	2.72	Ρ	+		-	-	GHH, PH	macro	-
11	М	47	46	0.05	Ρ	+		-	unilateral	GHH	macro	-
12	М	9	9	1.43	Ρ	+	+	-	-	GHH	N/A	-
13	М	22	22	2.05	Ρ	+		tinnitus	-	GHH, HT	N/A	-

FD : fibrous dysplasia; SD: skin dysplasia (café-au-lait skin pigments); PP: precocious puberty; VD: visual deficit (*: VD related to pituitary adenoma, others refer to FD-related VD); HT: hyperthyroidism;

GHH: growth hormone hypersecretion; PH: prolactin hypersecretion; LVH: left ventricular hypertrophy; HTN: hypertension; IGT: impaired glucose tolerance; DM: Diabetes Mellitus

+: positivity; -: negativity; P: poly; M: mono

	Pre-treatment							Post-treatment						
-	IGF1*		nadir		-		Tumor size	Follow-up	IGF1		nadir			
Case	(ng/mL)	Z score	GH	PRL	Treatment	IHC positivity	(cm)	time (years)	(ng/mL)	Z score	GH	PRL	Outcomes	
2	954	11.1	35.3	204.4	Surgery + LAR	GH, PRL	N/A	7.8	448	4.4	4.3	41.7	PR	
3	868	5.8	34.7	41.0	Surgery	GH, PRL	2.0×2.0 [#]	5.6	147	-1.1	0.3	2.4	CR	
4	863	12.9	62.7	7.4	LAR + Surgery	GH	1.7×1.2×1.0	5.0	137	-0.7	0.2	N/D	CR	
5	804	9.4	20.0	52.8	Surgery	GH, PRL	2.0×1.5×1.2	N/A	N/A	N/A	0.95	5.5	CR	
7	1593	7.6	8.2	15.9	LAR + Surgery	GH	1.2×0.9 [#]	8.1	48	-1.6	0.06	N/D	CR	
8	1252	18.2	12.5	57.8	γRT^a + Surgery	GH, PRL	2.0×0.9×1.1	9.6	138	-0.9	0.44	3.08	CR	
9	947	16.5	N/A	2.9	LAR+bromocryptine +Surgery	GH, PRL, LH	1.0×0.8×0.7	0.6	676	10.9	2.38	2.73	PR	
10	560	8.4	10.4	43.4	Surgery	GH, PRL	N/A	5.4	789	12.4	4.17	15.2	PR	
11	601	9.3	6.14	7.75	Surgery	GH	1.41×0.94 [#]	0.3	207	1.1	N/A	N/D	CR	

Table 2. The hormonal changes, treatments, tumor pathologies and outcomes of MAS patients with GH excess that underwent surgery.

*Normal values of serum IGF1 (the 5th and 95th percentiles): Case 2 (6 yrs.): 52–297; Case 3 (19 yrs.): 141–483; Case 4, (36 yrs.): 109-284; Case 5(27 yrs.): 117-329; Case 7(12 yrs.): 143-693,

Case 8 (35 yrs.): 115-307; Case 9&11(46, 47 yrs.): 94-252; Case 10(43 yrs.): 101-267;

[#]data of the third dimension was missing;

nadir GH: the lowest values of GH suppressed by OGTT;

LAR: long-acting somatostatin analogue octreotide

γRT = gamma knife radiotherapy; a: operated in other hospital;

N/D, not done; N/A, not available;

CR: complete remission; PR: partial response

Page 25 of 29

Year	Area	a No. of Sex/Age		No. of Sex/Age		Treatment for GH excess	Outcome	Ref.
		cases	(yrs)					
2001	Germany	1	M/8 ^a	LAR	PR	32		
2002	NIH,	10	M:F,2:8/	CAB (n=7)	6/7 PR	12		
	USA		Range:4-	LAR (n=8)	4/8 effective			
			40	CAB and LAR (n=4)	4/4 PR			
2003	India	3	M/28 ^a	transfrontal pituitary adenomectomy+ RT in all three	no response	33		
			M/25 ^a		PR			
			M/19 ^a		PR			
2005	Australia	. 1	M/8.5	octreotide+LAR	PR	34		
2006	Turkey	1	M/52	LAR	PR	35		
2006	Greece	6	M/9	LAR	CR	36		
2006	NIH,	5	M/33	LAR+CAB and pegvisomant	Not normalized IGF1	28		
	USA		F/39	LAR +pegvisomant	Normalized IGF1			
			M/17	LAR+ pegvisomant	Normalized IGF1			
			F/37	LAR+CAB and pegvisomant	Normalized IGF1			
					Increased tumor size			
			F/13	LAR+CAB and pegvisomant	Normalized IGF1			
2007	Korea	1	M/23	LAR and bromocriptine	Normalized PRL	37		
					GH/IGF1 decline			

Table 3 Treatments for GH excess in MAS patients and their outcomes: a review of literature

from 2001 to 2015

2008	Japan	1	M/15	Transfrontal partial adenomectomy+octreotide+	CR	38
				neurological decompression of the optic nerve+LAR		
				and CAB		
2009	Brazil	1	M/29 ^a	LAR+CAB	CR	39
2010	Poland	1	F/41	LAR	No response	40
2011	Japan	1	M/39 ^b	adenomectomy+cyberknife RT	normalized GH and	41
					АСТН	
2011	USA	2	F/21 ^a	① surgery(TSA)+ short-acting octreotide	residual tumor NCR	10
				②LAR+ second resection due to residual/recurrent		
				pituitary microadenoma+ lanreotide		
			F/29	LAR	PR	
2012	NIH,USA	3	M/19	selective removal(TSA)	PR	26
			F/29	selective adenomectomy (TSA)	PR	
			M/19	total hypophysectomy(TSA)	CR	
2012	India	1	M/33	subtotal excision(TSA)+ CAB	PR	42
2013	NIH	26	M:F 6:7	LAR(n=11)	Effective	43
				LAR + LAR and Pegvisomant(n=5)	4/5 effective	
				LAR + Pegvisomant(n=1)	IGF-I decline but not	
					normalized	
				LAR + Surgery(TSA) (n=2)	1/2 effective	
2014	France	3	F/22	LAR	PR	

M/35	 M/35 LAR + Pegvisomant F/64 LAR + LAR and DA +γ-nife radiotherapy+ 								
F/64									
	Pegvisomant								
surgery: transsphenoidal pituitary t	umor resection;								
a: complicated by PRL hypersecretion; b: complicated by hypercortisolism;									
CAB: cabergoline; LAR: long-acting somatostatin analogue octreotide; DA: dopamine antagonist									

TSA: Transspheinoidal approach

CR: complete remission; NCR: not complete remission; PR: partial response

+: followed by

Α

В

