1 2 3	GROWTH AND GROWTH HORMONE THERAPY IN SHORT CHILDREN BORN PRETERM
4	
5	Margaret Cristina da Silva Boguszewski, M.D., Ph.D.
6	Department of Pediatrics, Endocrine Division (SEMPR), Federal University of Paraná,
7	Curitiba, Brazil
8	e-mail: margabogus@uol.com.br
9	
10	Adriane de Andre Cardoso-Demartini, M.D., Ph.D.
11	Department of Pediatrics, Federal University of Paraná, Curitiba, Brazil
12	e-mail: dra.adriane@yahoo.com.br
13	
14	Corresponding author:
15	Margaret CS Boguszewski
16	Department of Pediatrics, Federal University of Paraná, Curitiba, Brazil
17	Rua General Carneiro, 181 (14º andar) - Curitiba, PR, Brasil
18	CEP: 80060-900
19	Phone: +55-41-3360-7994 - Fax: +55-41 3523-9184
20	
21	Short title: Growth and GH in preterm children
22	
23	Key Words: growth hormone, preterm, short stature, growth hormone treatment
24	
25	Word Count: 5120
26	

27 ABSTRACT

28

29 Approximately 15 million babies are born preterm across the world every year, with less than 30 37 completed weeks of gestation. Survival rates increased during the last decades with the 31 improvement of neonatal care. With premature birth, babies are deprived of the intense 32 intrauterine growth phase and postnatal growth failure might occur. Some children born 33 prematurely will remain short at later ages and adult life. The risk of short stature increases if 34 the child is also born small for gestational age. In this review, the effects of being born 35 preterm on childhood growth and adult height and the hormonal abnormalities possible 36 associated with growth restriction are discussed, followed by a review of current information 37 on growth hormone treatment for those who remain with short stature during infancy and 38 childhood.

40 INTRODUCTION

41

42 Preterm birth is defined by the World Health Organization (WHO) as birth before 37 43 completed weeks of gestation, or fewer than 259 days since the first day of a woman's last 44 menstrual period (1). Of the 135 million live births worldwide in 2010, WHO estimates that 45 14.9 million babies were born prematurely, representing an increasing burden with a preterm 46 birth rate of 11.1% (2). The risk of preterm birth is high for both the poorest and the richest 47 countries. Approximately 60% of all preterm births worldwide occurred in sub-Saharan 48 Africa and South Asia. However, of the 1.2 million estimated to occur in high-income 49 regions, more than 0.5 million (42%) occur in the United States (2). In England and Wales, it 50 is estimated that 53,000 infants were born preterm in 2010 (3). The causes of prematurity 51 differ among countries (3), with the increment in many high-income countries attributed to 52 multiple gestation and assisted conceptions due to treatment for sub-fertility (4). The survival 53 rate also varies among countries due to differences in basic care (5), with preterm birth 54 considered one of the major causes of death before 5 years of age (2).

55 The measurement of gestational age (GA) indicates the length of gestation counted in 56 days or weeks, from the first day of the last menstrual cycle, except for women undergoing 57 assisted reproduction techniques. The term date, or 40 weeks (280 days), is calculated using 58 the Naegele's rule, which adds seven days to the first day of the last menstrual period (LMP) 59 and, to this date, sum nine months assuming a menstrual cycle of 28 days and ovulation in the 60 14th day (6). However, in many pregnancies, LMP is unknown or menstrual cycles are 61 irregular. In these cases, measurements of the embryo or fetus obtained by ultrasonography 62 performed up to 13 weeks and 6 days post-conception are accurate to determine or confirm 63 the GA (7). In case of assisted reproduction, the expected date of birth is calculated from the 64 day of technical implementation. In case of in vitro fertilization, from the day of embryo

transfer to the uterus (7). After birth, GA can be estimated by physical examination andneurological maturity of the newborn (8).

67 Preterm birth can be subdivided on the basis of GA, with extremely preterm (EPT) 68 occurring at less than 28 weeks of GA, very preterm (VPT) from 28 but less than 32 weeks 69 and moderate preterm (MPT) occurring from 32 and less than 37 completed weeks of 70 gestation. MPT can be subdivided, being late preterm those born between 34 to 36 weeks and 71 6 days (9). The majority of the infants born prematurely, about 84% or 12.5 million, are 72 moderate premature (10). In addition to this definition, studies performed before antenatal 73 ultrasound became a routine for evaluation of GA considered infants as extremely low birth 74 weight (ELBW), if weight was lower than 1000 g, and very low birth weight (VLBW), if 75 lower than 1500 g. The use of birth weight as a selection criterion had the disadvantage to 76 include, in the same study group, more mature children born small for GA (SGA) and preterm 77 infants born appropriate for GA (AGA) (11). Neonatal survival improves with an increase in 78 GA and weight at birth (10). Lifelong morbidities among survivors include cerebral palsy, 79 intellectual impairment, chronic lung disease and vision and hearing loss (3). Increased blood 80 pressure, accelerated weight gain and growth failure are also among the comorbidities (2, 12, 81 13). In this review, we will highlight current information on growth in children born 82 prematurely, mainly referring to publications with preterm classification based on GA; the 83 hormonal abnormalities possible associated with lack of catch-up growth after the first 84 months of life, and discuss potential treatment with recombinant human growth hormone 85 (rhGH) for those who remain with short stature during infancy and childhood.

86

87 PRETERM GROWTH CHARTS

89 With the advances in neonatal care during the last decades, the perspectives of growth 90 of children born prematurely changed. The growth charts used to monitor their growth also 91 had to improve. Nowadays, different types of growth charts are available for formerly preterm 92 infants. The *intrauterine growth charts* are based on measurements of infants with different 93 GA, the *fetal growth charts* are constructed with fetal measurements obtained by ultrasound, 94 and the *postnatal growth curves* are constructed with measurements of infants during the 95 hospitalization period. Significant differences are observed between these reference charts for 96 evaluation of postnatal growth, especially with regard to head circumference (HC) (14).

97 The *intrauterine growth charts* are the most recommended for monitoring growth of 98 preterm infants. At least 25 reference charts of this type are available (15). One of their 99 disadvantages is the fact that the preterm infant usually is smaller than the healthy reference 100 not exposed to the extrauterine environment (16-18). Furthermore, after preterm birth, weight 101 gain and longitudinal growth are more intense close to term (37-40 weeks), whereas weight 102 and length gain are already decreasing at the end of a normal full term gestation (19). In 2003, 103 Fenton put together data of three different populations and developed an intrauterine growth 104 chart starting at 22 weeks of gestation with scale of weight every 100 grams. The CDC-2000 105 growth data between 40th and 50th weeks post-conception were added resulting in a *fetal*-106 *neonatal growth chart*, which facilitates the adjustment of growth to prematurity, 107 recommended up to 3 years of age (20). A new version was released in 2013 with data from 108 six countries. It is now a gender-specific growth chart from 22 weeks gestation until 10 weeks 109 after term and aligns with the WHO-2006 growth charts allowing a longer period of growth 110 follow-up (19).

111 Fetal growth charts are constructed from fetal measurements obtained by 112 ultrasonography. Theoretically, they reflect the expected growth for each gestational age 113 without the effects of prematurity. Their disadvantage is the sensitivity of ultrasonography to

Page 6 of 33

114 assess fetal weight, especially during the first weeks of gestation (15, 21-23). The *postnatal* 115 *growth charts* are longitudinal and constructed from sequential measurements of preterm 116 infants, considering the delay of the early extrauterine growth (15). An example is the gender-117 specific curves from 24th week up to 2 years of corrected age from Sweden (24).

118 More recently, customised growth charts adjusted for physiological variables such as 119 maternal weight and height, parity, ethnicity and smoking were created (25). The 120 INTERGROWTH-21st Project, a prospective international multiethnic study, was launched to complement the WHO 2006 (26) by developing international standards for fetuses, newborn 121 122 infants and postnatal growth of infants born prematurely (27). Data from pregnancies of low 123 obstetric risk from Brazil, China, India, Italy, Kenya, Oman, United Kingdom and United 124 States were included. The authors suggested that using multiple populations from several 125 countries would enhance the diversity in the biological characteristics, such as parental size and maternal weight gain during pregnancy, as well as external factors influencing fetal 126 127 growth (27). The resulting growth charts were recommended for preterm infants born after 33 128 weeks gestation to 6 months of corrected age for prematurity (28). Currently, no large 129 randomized trials are available showing the benefits of customised growth charts (29).

130

131 EARLY GROWTH IN CHILDREN BORN PREMATURELY

132

Several factors might influence intrauterine growth, such as genetic, environmental and hormonal factors, placental development, supply of nutrients and maternal health (30). In uncomplicated pregnancies, the fetus has a high growth rate that will not be repeated in any other stage of life. With premature birth, babies are deprived of this intense intrauterine growth phase. In addition, preterm birth might disrupt the normal growth regulation of infancy.

139 The American Academy of Pediatrics recommends that infants born prematurely 140 should grow similarly to the fetus with the same GA. This recommendation refers mainly to 141 weight gain, although length and head circumference are also important, the latter associated 142 with neurological outcome (31). Typically, weight loss is expected during the first days of 143 life, similar to the initial weight loss observed in babies born at term. However, in preterm 144 infants, the intensity of this loss is associated with GA, birth weight and time required to 145 achieve full enteral nutrition (32). After this initial period, a transition phase should start, with 146 stabilization of weight and a slight increase in length, followed by the catch-up period, when 147 growth rate exceeds the expected for the fetus with the same GA. The last phase is 148 characterized by growth rate comparable to that of children born at term (33-35). When 149 growth restriction remains during early postnatal period with growth rates lower than 150 expected, it is stated that the preterm infant is suffering extrauterine growth restriction (EUGR) (36, 37), more common among extremely and very preterm infants (38). There is no 151 152 consensus on definition of EUGR. One definition considers a decrease of 2.0 SD or more in 153 weight and/or length between birth and 36 weeks post-conception (39). Less strict definitions 154 are also used by pediatricians (36, 37, 40). In addition to time of gestation, another factors 155 were associated with increased risk of impairment of early growth, including male gender (37, 156 41), history of maternal hypertension (42), bronchopulmonary dysplasia (BPD) (37, 43, 44), 157 necrotizing enterocolitis (37), postnatal use of corticosteroids (37, 45, 46), IUGR or SGA 158 birth (47), high levels of total alkaline phosphatase during the neonatal period (42), EUGR 159 (48, 49), and feeding difficulties (50, 51).

160

161 CHILDHOOD OUTCOME

163 The first year of life is a critical period for children born prematurely. Hospital stay can 164 be long and prone to morbidities as lung diseases, intraventricular hemorrhage, necrotizing 165 enterocolitis, late onset-sepsis, among others (52). Weight and height gain is associated with 166 the age of achievement of full enteral feedings and occurrence of EUGR (36, 37, 39). Those 167 who survive to hospital discharge are shorter and lighter than full-term peers, despite the 168 intense catch-up growth they may have had (53). Approximately 80% of formerly preterm 169 children exhibit growth recovery during the first 2 years of life (33, 35, 54-57), with height 170 percentile appropriated for genetic potential between 6 and 12 months of life. After 2-3 years 171 of age, height gain correlates with parent's height (55, 58-62). At 3 years of age, 172 approximately 80% reaches the normality for head circumference and 70% for weight. The 173 lack of recovery is also associated with low socioeconomic status (63), long period of 174 parenteral nutrition, neurological disorders, chronic respiratory diseases, EUGR and parental 175 short stature (37, 41, 47, 64, 65). This review will focus on growth after 2 years of age, when 176 a more stable healthy condition is expected with less hospital readmissions.

177

178 Infancy and childhood growth

179

180 Despite the majority of the preterm infants are MPT, much of the research to date on 181 growth of infants born prematurely has focused on those born with less than 32 weeks of GA. 182 More extreme the limit of viability, more the effects of preterm birth are confounded with 183 those of intrauterine and extrauterine growth restrictions. In the extreme lower limit of weight 184 at birth, Rieger-Fackeldey et al. (66) reported the follow-up of 19 children with a birth weight 185 < 500 g who received immediate life support, all EPT, 18 born SGA. Seven of them caught up in length by 5 years of age, but all were below the 25th percentile in height by this age. 186 187 Another study, the EPICure cohort, evaluated 241 children born with $GA \le 25$ weeks (67). At

188 6 years of age, children born EPT were still leaner, shorter and have a smaller head 189 circumference than their peers, with some catch-up growth observed from 30 months to 6 190 years of age. Birth weight for GA was strongly associated with growth outcome at 6 years. 191 Follow-up to 11 years of age of 83 EPT children born in the 1990s was described by Farooqi 192 et al. (54). Their mean GA was 24.6 weeks and mean birth weight was 765 g, six were born 193 SGA and three were on GH treatment. A marked drop in weight SDS was observed to 3 194 months' corrected age, when weight began to increase reaching the mean of the reference at 195 approximately 11 years of age. Similar pattern was observed for height, with a significant 196 increase in height SDS between the ages of 3 months of corrected age for prematurity and 3 197 years and between ages 7 and 11 years. At 11 years of age, EPT girls were 3.1 cm and the 198 EPT boys 5.7 cm shorter than controls. Unfortunately, they did not have information on 199 pubertal development; pubertal growth spurt could explain in part their later increase in 200 height.

201 Among the VPT children, a French population-based study evaluated growth outcome to 202 5 years of age in 1597 children born in the late 1990s (68). At 5 years, 5.6% had short stature 203 and 6 children received rhGH treatment between 2 and 5 years of age. Of the 118 children 204 with short stature at 2 years, 55 (47%) remained with short stature at 5 years, whereas from 205 the 276 with height between -1 and -2 SD at 2 years, 26 (9%) became \leq -2 SD at 5 years. The 206 highest incidence of short stature at 5 years was observed among preterm born AGA with 207 EUGR, whereas the incidence among preterm born SGA did not change from 2 to 5 years, 208 suggesting that catch-up growth in SGA children occurs mainly during the first 2 years of life, 209 as previously reported (69). Knops et al. (58) demonstrated that VPT children born AGA had 210 normal stature at 10 years of age, while those born VPT and SGA were lower even after 211 correction for target height (AGA = 0.0 SDS; SGA < 32 weeks = -0.29 SDS; SGA ≥ 32 weeks 212 = -0.13 SDS). Catch-up growth was especially seen in the children born SGA with a fast

213 weight gain during the first three months of life. At a mean age of 8 years, Hack et al. (41) 214 found height SDS of -2.6 for boys born with VLBW, significantly lower than the control 215 group born full term. VLBW girls were leaner but did not differed significantly in height 216 compared with the controls group. Ford et al. (64) observed an acceleration of growth 217 between 8 and 14 years of age in teenagers born with BW < 1500g and GA < 30 weeks, 218 suggesting a late catch-up growth. Most of them had weight and height higher than -2.0 SDS, 219 but all were lower and lighter than the control group born at term and AGA. The risk of short 220 stature increased with maternal height < 160 cm, GA < 29 weeks, birth length < -2 SD and 221 use of corticosteroids. The influence of being born SGA, maternal size and comorbidities on 222 height of formerly preterm children at 5 years or older has been reported before (58-60, 62). 223 Trebar et al. (59) evaluated 1320 children born with VLBW at 5-6 yrs of age, GA from 22 to 224 38 weeks, 730 born SGA and 590 born AGA. At age 6, 8.3% AGA and 13.4% SGA children 225 were short (< -2 SDS). The most important predictors of height at 5/6 y of age were height at 226 1 year of age, the difference in height between ages 1 and 2 and midparental height SDS. 227 Despite to have children born at term in their study, the majority was preterm with known 228 GA. At 12 years of age, children born prematurely and SGA were shorter and leaner than 229 children born full term and AGA, without increment in height after 8 years of age, whereas 230 preterm born AGA with neonatal comorbidities still presented some gain in height after 8 231 years of age (70). These studies reinforce the influence of size at birth on catch-up growth 232 among preterm children.

When considering less premature infants, 1123 MPT children born between 2002-2003 in Netherlands were evaluated at the age of 4 years (71). Growth restraint was 2.5 times more prevalent in MPT than in term children; 32 boys (5.6%) and 18 girls (3.8%) were growth-restricted in height at this age. In a population-based study evolving 1414 late preterm infants (born between 34 to 36 weeks and 6 days) followed from birth to 3 years of age at the

city of Kobe, Japan, the authors showed an incidence of 2.9% of short stature in the late preterm group, significantly higher than the 1.4% found in the term group. The risk for short stature was 4.5-fold higher if the late preterm were born SGA (13). Figure 1 illustrates growth trajectories that could occur in children born preterm based on the previous publications.

242 Regarding height at onset of puberty, data from adolescents born during the 1970s in 243 Sweden showed that those born SGA were shorter at puberty onset with earlier menarche than 244 the reference group, but neither age at puberty onset nor menarche was influenced by 245 prematurity (72). In low birth weight children, including ELBW, despite they were shorter 246 and lighter than those born at term at start of puberty, previous reports did not find difference 247 in sexual maturity (61, 64, 73). Sullivan et al. (70), using self-assessment evaluation, found 248 that 60% of the boys and 50% of the girls in a group of 194 adolescents born prematurely 249 were Tanner stage 0 at 12 years of age. Few had completed puberty at this age. More recently, 250 data of VLBW children born between 1978 and 1985 were evaluated to adult height and 251 compared with data from full term born group (74). The study included VLBW born SGA 252 (GA 29 – 35.6 weeks; birth weight 700 – 1499 g) and VLBW born AGA (GA 24.7 – 31.7 253 weeks; 600 - 1490 g). They all were shorter than controls during prepubertal years, as 254 reported before. However, age at acceleration of growth velocity during puberty onset was 255 earlier in both groups of VLBW, ten months earlier in VLBW AGA and 11 months earlier in 256 VLBW SGA. Higher body mass index during prepubertal years was associated with an early 257 growth spurt. Age at attaining adult height was also significantly lower. Age of puberty onset 258 was in the normal range and no difference was observed in age of menarche or voice change 259 (74), reinforcing the need of carefully follow all growth period of formerly preterm children, 260 from birth to maturity, in order to detect any acceleration of growth velocity that could 261 suggest an early growth spurt. Brandt et al. (75) found a significant difference in age at 262 menarche among SGA girls born preterm without catch-up growth and girls born full term

263	(12.2 vs. 13.4 years, $p < 0.01$). Difference was also significant when compared with preterm
264	girls born SGA with postnatal catch-up growth (12.2 vs. 13.6 years, $p < 0.01$), suggesting the
265	importance of catch-up growth in age of menarche. Age of menarche was also associated with
266	lower GA (74).

267 Although puberty begins at a normal age, children born prematurely are more prone to an 268 earlier onset of pubertal development, faster progression of puberty and earlier menarche 269 relative to full-term and AGA children (74). A modest bone age delay at the onset of puberty 270 and more rapid bone maturation during puberty has been reported, similar to SGA children 271 (76, 77). Peak height velocity is reached at an earlier pubertal stage and lasts for a shorter period in children born prematurely (74, 76), increasing the risk of a shorter adult height. 272 273 Rapid weight gain early in childhood might be associated with unfavorable growth outcome 274 (76, 77). Table 1 summarizes the risk factors for short stature in subjects born prematurely.

275

276 ADULT OUTCOME

277

Few studies are available on adult height in those born preterm (Table 2) (41, 57, 74, 75, 78-83). Some are cohort studies with strict inclusion criteria and subjects followed from birth to adult height, but with the disadvantages of long-term studies, such as loss of follow-up. There are also cross-sectional population-linkage studies, with data from birth linked to data in adult life, with the possibility of much larger samples (80).

In a nationwide population-linkage study in Norway, birth records and adult height of 348,706 young boys were evaluated, 15,454 of them (4.5%) born with GA from 26 to 36 weeks. Birth length was the best predictor of adult height. However, when stratified by GA, the relatively long infants born preterm became shorter adults compared with same-length infants born at term (12). In a cohort study in Germany (75) with evaluation of 108 VLBW

288 infants born from 1967 to 1978, almost 50% had complete catch-up by adult age. The authors 289 concluded that growth at earlier ages did not predict adult height due to a great intraindividual 290 variability in growth patterns from birth to 6 years of age and to adulthood. GA ranged from 291 approximately 28 to 35 weeks and could explain in part the variability in postnatal growth 292 patterns. In Australia (84), a total of 42 ELBW subjects born after 1977 were followed from 293 birth to 20 years of age. Catch-up growth was observed only at 14 years of age, during 294 puberty. Two of the subjects received synthetic growth hormone (GH), and by early 295 adulthood, all had attained height consistent with their parents' height. The same group 296 followed 225 consecutive EPT survivors born during 1991-1992 to 18 years of age (83). For 297 this evaluation, selection criterion was based on GA. EPT children were shorter than controls 298 at all ages from 2 to 18 years. At 18 years, 9% of the EPT were < -2 SD in height, against 299 only one subject (0.7%) born at term with short stature. Height at 2 years explained 50% of 300 the variability in final height. The control group born at term was significantly higher than 301 their median parental height, whereas the EPT subjects were slightly lower than their parents. 302 Another way to evaluate outcome in infants born prematurely is to consider neonatal 303 growth and the occurrence of EUGR in addition to GA. Finken et al. (57) evaluated 380 304 adolescents born VPT (<32 weeks GA), 21% of them born AGA and with EUGR, confirmed 305

adorescents born VPT (<32 weeks GA), 21% of them born AGA and with EUGR, confirmed with measurements at 3 months of age. Their height near 19 years of age was compared with height of VPT AGA without EUGR and with height of VPT born SGA. The AGA group with EUGR was characterized by a low GA, a high prevalence of respiratory distress, intracranial hemorrhage and glucocorticoid therapy. The prevalence of short stature at 5 years of age was close to 20% in both VPT SGA and VPT AGA with EUGR. In addition, height <-2 SD at the age of 5 years in these two groups points to a high risk (\approx 90%) of short stature in adulthood. Their growth was compared with that described previously for SGA children born at term, suggesting that they could benefit from GH treatment. Hack et al. (41) evaluated 195 VLBW

313 young adults at 20 years of age. Compared with control group, boys were leaner (-0.35 \pm 1.25 314 *vs* 0.53 \pm 1.06 SDS) and shorter (-0.44 \pm 1.10 *vs* 0.03 \pm 0.95 SDS), 7% with height < -2.0 SDS. 315 Short stature at 20 years of age was associated with lower maternal education, lower maternal 316 height and lower birth weight.

317

318 HORMONAL ABNORMALITIES

319

320 It has been proposed that adverse exposures during fetal and early postnatal life lead to 321 unfavorable programming effects (85-87). In infants born prematurely, the period equivalent 322 to the third trimester of gestation occurs extra utero, with higher risk of alterations of the GH 323 and insulin-like growth factor (IGF) system (88). Few and conflicting data are available on 324 GH axis in formerly preterm children with short stature during infancy and childhood. Elevated circulating GH levels during neonatal period with low IGF-1 and low GH binding 325 326 protein (GHBP) concentrations were reported, suggesting immaturity of the GH receptor with 327 less inhibitory feedback on hypothalamopituitary axis (89, 90). Association of IGF-1 levels 328 with growth restriction and catch-up growth in the immediate postnatal period (91). low IGF-329 1 and IGF-binding protein 3 (IGFBP-3) concentrations (88, 92) with high IGF-2 during mid-330 childhood (88), normal IGF-1, IGF-2, IGFBP-1 and GH binding protein (GHBP) with high 331 IGFBP-2 (93), and lower prolactin and higher IGF-1 levels than control at start of puberty 332 (94) were also reported. Normal response to IGF-1 generation test (95) were reported in short 333 children at mean age of 7 yr.-old, with no clear evidence of GH or IGF insensitivity, but with 334 some suggestion of alterations of the IGF/IGFBP system. During the immediate postnatal 335 period to 6 months postterm, IGF-1 levels were not associated with nutrient intake (91, 96). A 336 highly significant influence of the genomic deletion of exon 3 of the GH receptor, d3-GHR 337 isoform, on the postnatal growth pattern was also reported, with higher probability of

postnatal catch-up growth in those who carry at least one GHRd3 allele. Children heterozygous or homozygous for GHRd3 also had higher serum levels of IGF-1 and IGFBP-3 (97). Recently, Guasti et al. evaluated fibroblast growth factor 21 (FGF21) serum concentrations during the first 5 weeks of life in VPT infants. They found an inverse association with linear growth but not with weight gain (98). High FGF21 level impairs linear growth by a mechanism involving direct inhibition of GH action on chondrocyts at the growth plate. This could be an explication for the GH resistance secondary to prematurity (98).

These results might reflect the heterogeneity of preterm birth, with possibilities of intra and extrauterine growth retardation and an immature fetal state of the GH/IGF-1 axis during the early postnatal period with relatively low GHR expression. During mid-childhood and puberty, with more mature GH/IGF-I axis, alterations of the IGF/IGFBP system might occur.

349

- 350 GROWTH HORMONE TREATMENT
- 351

352 GH treatment was given to seven preterm infants born SGA from postnatal day 7 until a 353 body weight of 2000 g was reached at postnatal week 7-8 in an attempt to improve nutrition. 354 No significant effects were observed on growth, body composition, net protein gain and 355 glucose metabolism (99). Recently, VPT infants received recombinant human GH (0.03 356 mg/kg/day) after birth. At 6 months of treatment, growth velocity, body weight, length and 357 HC were significantly higher compared with the control group. Time to reach adequate oral 358 feeding and time to restore birth weight were shorter and less EUGR was observed (100). 359 IGF-1 and IGFBP-3 levels were not different at birth, with significantly higher concentrations 360 at 3 and 6 months in the treatment group. The authors suggested that GH treatment regulates 361 the preterm endocrine and metabolic state without severe adverse effects (100). No further 362 studies with GH treatment at this early age were available at present time.

363 Studies on the effects of GH for treatment of short stature of different etiologies usually 364 included children born prematurely, especially those involving children born SGA (101, 102). 365 GH treatment was approved by the US Food and Drugs Administration in 2001 for children 366 born SGA who fail to manifest catch-up growth by the age of 2 years. Approved GH dose was 367 0.070 mg/kg.d. In Europe, treatment was approved by the European Agency for the 368 Evaluation of Medical Products in 2003 with the dose of 0.035 mg/kg.d for children older 369 than 4 years of age. The consensus statement from the International Societies of Pediatric 370 Endocrinology and the Growth Hormone Research Society proposed that children born SGA 371 with height below -2.5 SDS at the age of 2 years or with height below -2.0 SDS at the age of 372 4 years should be eligible for GH treatment (103). In the SGA studies, the preterm ones were 373 often younger and shorter than the term ones, with height velocity SDS below zero which 374 reinforces that they were not presenting spontaneous catch-up growth (104, 105). de Kort et 375 al. (104) evaluated a cohort of 392 short SGA children treated during 3 years with GH. The 376 response to GH treatment was similar for both preterm and term short SGA groups. After 4 years of 377 treatment, the effects of GH on metabolic and cardiovascular risk factors were similar 378 between preterm and term SGA children, with no significant changes in glucose homeostasis 379 and a decrease in blood pressure and fat mass in the preterm ones (104). Among very young 380 short children born SGA (chronological age at start of GH treatment from 2 to 4 years), those 381 born prematurely received a higher GH dose and presented higher growth velocity during the 382 first year of therapy (105).

Few studies in which only formerly preterm children were included are available to date. The first year growth response to GH treatment in short children born preterm (26 to 37 uncompleted weeks of GA) was demonstrated using information from a large international database of children treated with rhGH, including 1928 preterm AGA, 629 VPT AGA, 519 preterm SGA and 139 VPT SGA, all prepubertal and with different GH secretion status (106).

388 Age at started ranged from 3 to 12 years and all four groups presented a significant increase in 389 height velocity and weight gain during the first year of GH treatment. Age at GH start, bone 390 age, and adjusted parental height were inversely associated with the first year growth 391 response, whereas GH dose had a positive association. Gestational age and birth weight SDS 392 had a weak correlation with the growth response only for the preterm born AGA. One year 393 rhGH treatment of short children born with VLBW both AGA and SGA, showed similar 394 increase in height velocity, height, weight and muscle strength in both groups, with increment 395 of IGF-1 concentrations (107). Growth response and adult height could be predicted using 396 prediction models independent of GH secretion status and size at birth (108, 109). Garcia et 397 al. (110) evaluated the growth response with a relatively high GH dose (0.066 mg/kg/day) in 398 very young SGA children born prematurely. They reported an increment of 1.3 SD after the 399 first year with a subsequent gain of 2.1 SD for the 17 children who completed 2 years of GH 400 treatment. These studies suggest that, when growth failure occurs and persists during infancy 401 and childhood, children born prematurely might benefit from GH treatment.

402

403 CONCLUSION

404

405 Growth pattern of children born prematurely has unique characteristics. Weight loss 406 is expected during the first days of life, followed by stabilization of weight and a slight 407 increase in length. A catch-up period is further expected with growth rates comparable to that 408 of children born at term. Approximately70 to 80% of children born preterm will have 409 adequate height, weight and head circumference by 3 years of age. However, when growth 410 restriction remains during infancy and childhood, children born prematurely are of increased 411 risk of short stature. Growth failure may be compounded in the presence of intrauterine or 412 extrauterine growth restrictions, extreme prematurity, bronchopulmonary dysplasia,

18

413 necrotizing enterocolitis or metabolic bone disease of prematurity. Those who are short at 2
414 years of age are unlikely to reach normal height during childhood. A careful follow-up is
415 recommended. If further catch-up growth is not observed, they might be candidates to GH
416 treatment.

417

418 DECLARATION OF INTEREST AND FUNDING

419 There are no conflicts of interest to be reported by the authors. This research did not receive

420 any specific grant from any funding agency in the public, commercial or not-for-profit sector.

422 REFERENCES

423

424	1.	WHO. WHO: recommended definitions, terminology and format for statistical tables
425		related to the perinatal period and use of a new certificate for cause of perinatal
426		deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta
427		<i>Obstet Gynecol Scand</i> 1977 56 247-253.
428	2.	Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, Kinney M &
429		Lawn J. Born too soon: the global epidemiology of 15 million preterm births. Reprod
430		<i>Health</i> 2013 10 Suppl 1 S2.
431	3.	Platt MJ. Outcomes in preterm infants. Public Health 2014 128 399-403.
432	4.	Messerschmidt A, Olischar M, Birnbacher R, Weber M, Pollak A & Leitich H.
433		Perinatal outcome of preterm infants <1500 g after IVF pregnancies compared with
434		natural conception. Arch Dis Child Fetal Neonatal Ed 2010 95 F225-229.
435	5.	Lawn JE, Davidge R, Paul VK, von Xylander S, de Graft Johnson J, Costello A,
436		Kinney MV, Segre J & Molyneux L. Born too soon: care for the preterm baby.
437		Reprod Health 2013 10 Suppl 1 S5.
438	6.	Nguyen TH, Larsen T, Engholm G & Moller H. Evaluation of ultrasound-estimated
439		date of delivery in 17,450 spontaneous singleton births: do we need to modify
440		Naegele's rule? Ultrasound Obstet Gynecol 1999 14 23-28.
441	7.	Committee on Obstetric Practice. American Institute of Ultrasound in Medicine;
442		Society for Maternal-fetal Medicine. Committee opinion nº 611: method for
443		estimating due date. Obstet Gynecol 2014 124 863-866.
444	8.	Ballard JL, Khoury JC, Wedig K, Wang L, Eilers-Walsman BL & Lipp R. New
445		Ballard Score, expanded to include extremely premature infants. J Pediatr 1991 119
446		417-423.
447	9.	Engle WA. A recommendation for the definition of "Late preterm" (Near term) and
448		the birth weight-gestational age classification system. Semin Perinatol 2006 30 2-7.
449	10.	Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A,
450		Vera Garcia C, Rohde S, Say L, et al. National, regional, and worldwide estimates of
451		preterm birth rates in the year 2010 with time trends since 1990 for selected
452		countries: a systematic analysis and implications. <i>Lancet</i> 2012 379 2162-2172.

Page 20 of 33

453	11.	Smith LK, Draper ES & Field D. Long-term outcome for the tiniest or most
454		immature babies: survival rates. Semin Fetal Neonatal Med 2014 19 72-77.
455	12.	Eide MG, Oyen N, Skjaerven R, Nilsen ST, Bjerkedal T & Tell GS. Size at birth and
456		gestational age as predictors of adult height and weight. Epidemiology 2005 16 175-
457		181.
458	13.	Nagasaka M, Morioka I, Yokota T, Fujita K, Kurokawa D, Koda T, Shibata A,
459		Yamada H, Ito Y, Uchino E, et al. Incidence of short stature at 3 years of age in late
460		preterm infants: a population-based study. Arch Dis Child 2015 100 250-254.
461	14.	Neubauer V, Fuchs T, Griesmaier E, Pupp-Peglow U & Kiechl-Kohlendorfer U.
462		Comparing growth charts demonstrated significant deviations between the
463		interpretation of postnatal growth patterns in very preterm infants. Acta Paediatr
464		2016 105 268-273.
465	15.	Rao SC & Tompkins J. Growth curves for preterm infants. Early Hum Dev 2007 83
466		643-651.
467	16.	Bertino E, Milani S, Fabris C & De Curtis M. Neonatal anthropometric charts: what
468		they are, what they are not. Arch Dis Child Fetal Neonatal Ed 2007 92 F7-F10.
469	17.	Villar J, Knight HE, de Onis M, Bertino E, Gilli G, Papageorghiou AT, Ismail LC,
470		Barros FC & Bhutta ZA. Conceptual issues related to the construction of prescriptive
471		standards for the evaluation of postnatal growth of preterm infants. Arch Dis Child
472		2010 95 1034-1038.
473	18.	Pereira-da-Silva L & Virella D. Is intrauterine growth appropriate to monitor
474		postnatal growth of preterm neonates? BMC Pediatr 2014 14 14.
475	19.	Fenton AC & Kim JH. A systematic review and meta-analysis to revise the Fenton
476		growth chart for preterm infants. BMC Pediatr 2013 13 1-13.
477	20.	Wang Z & Sauve RS. Assessment of postneonatal growth in VLBW infants:
478		selection of growth references and age adjustment for prematurity. Can J Public
479		Health 1998 89 109-114.
480	21.	Chauhan SP, Charania SF, McLaren RA, Devoe LD, Ross EL, Hendrix NW &
481		Morrison JC. Ultrasonographic estimate of birth weight at 24 to 34 weeks: a
482		multicenter study. Am J Obstet Gynecol 1998 179 909-916.
483	22.	Carranza Lira S, Haro Gonzalez LM & Biruete Correa B. Comparacion entre la
484		medicion clinica y ultrasonografica para estimar el peso fetal en la fase activa del

485		trabajo de parto: nueva formula para el calculo clinico. Ginecol Obstet Mex 2007 75
486		582-587.
487	23.	Merialdi M, Widmer M, Gulmezoglu AM, Abdel-Aleem H, Bega G, Benachi A,
488		Carroli G, Cecatti JG, Diemert A, Gonzalez R, et al. WHO multicentre study for the
489		development of growth standards from fetal life to childhood: the fetal component.
490		BMC Pregnancy Childbirth 2014 14 157-165.
491	24.	Niklasson A & Albertsson-Wikland K. Continuous growth reference from 24th week
492		of gestation to 24 months by gender. BMC Pediatr 2008 8 8-32.
493	25.	Gardosi J. Customised assessment of fetal growth potential: implications for
494		perinatal care. Arch Dis Child Fetal Neonatal Ed 2012 97 F314-317.
495	26.	WHO Multicentre Growth Reference Study Group. WHO Child Growth Standards
496		based on length/height, weight and age. Acta Paediatr Suppl 2006 450 76-85.
497	27.	Villar J, Giuliani F, Bhutta ZA, Bertino E, Ohuma EO, Ismail LC, Barros FC,
498		Altman DG, Victora C, Noble JA, et al. Postnatal growth standards for preterm
499		infants: the Preterm Postnatal Follow-up Study of the INTERGROWTH-21(st)
500		Project. Lancet Glob Health 2015 3 e681-691.
501	28.	Villar J, Papageorghiou AT, Pang R, Salomon LJ, Langer A, Victora C, Purwar M,
502		Chumlea C, Qingqing W, Scherjon SA, et al. Monitoring human growth and
503		development: a continuum from the womb to the classroom. Am J Obstet Gynecol
504		2015 213 494-499.
505	29.	Carberry AE, Gordon A, Bond DM, Hyett J, Raynes-Greenow CH & Jeffery HE.
506		Customised versus population-based growth charts as a screening tool for detecting
507		small for gestational age infants in low-risk pregnant women. Cochrane Database
508		<i>Syst Rev</i> 2014 CD008549.
509	30.	Murphy VE, Smith R, Giles WB & Clifton VL. Endocrine regulation of human fetal
510		growth: the role of the mother, placenta, and fetus. Endocr Rev 2006 27 141-169.
511	31.	Pfister KM & Ramel SE. Linear growth and neurodevelopmental outcomes. Clin
512		Perinatol 2014 41 309-321.
513	32.	Huysman WA, de Ridder M, de Bruin NC, van Helmond G, Terpstra N, Van
514		Goudoever JB & Sauer PJ. Growth and body composition in preterm infants with
515		bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 2003 88 F46-51.
516	33.	Niklasson A, Engstrom E, Hard AL, Wikland KA & Hellstrom A. Growth in very
517		preterm children: a longitudinal study. Pediatr Res 2003 54 899-905.

518	34.	Sauer PJ. Can extrauterine growth approximate intrauterine growth? Should it? Am J
519		<i>Clin Nutr</i> 2007 85 608S-613S.
520	35.	Rugolo LMSS. Growth and developmental outcomes of the extremely preterm infant.
521		<i>J Pediatr (Rio J)</i> 2005 81 S101-110.
522	36.	Sices L, Wilson-Costello D, Minich N, Friedman H & Hack M. Postdischarge
523		growth failure among extremely low birth weight infants: Correlates and
524		consequences. Paediatr Child Health 2007 12 22-28.
525	37.	Clark RH, Thomas P & Peabody J. Extrauterine growth restriction remains a serious
526		problem in prematurely born neonates. Pediatrics 2003 111 986-990.
527	38.	Cooke RJ, Ainsworth SB & Fenton AC. Postnatal growth retardation: a universal
528		problem in preterm infants. Arch Dis Child Fetal Neonatal Ed 2004 89 F428-430.
529	39.	Shah PS, Wong KY, Merko S, Bishara R, Dunn M, Asztalos E & Darling PB.
530		Postnatal growth failure in preterm infants: ascertainment and relation to long-term
531		outcome. J Perinat Med 2006 34 484-489.
532	40.	Lin Z, Green RS, Chen S, Wu H, Liu T, Li J, Wei J & Lin J. Quantification of EUGR
533		as a Measure of the Quality of Nutritional Care of Premature Infants. PLoS One 2015
534		10 e0132584.
535	41.	Hack M, Schluchter M, Cartar L, Rahman M, Cuttler L & Borawski E. Growth of
536		very low birth weight infants to age 20 years. Pediatrics 2003 112 e30-38.
537	42.	Fewtrell MS, Cole TJ, Bishop NJ & Lucas A. Neonatal factors predicting childhood
538		height in preterm infants: evidence for a persisting effect of early metabolic bone
539		disease? J Pediatr 2000 137 668-673.
540	43.	Vohr BR, Bell EF & Oh W. Infants with bronchopulmonary dysplasia. Growth
541		pattern and neurologic and developmental outcome. Am J Dis Child 1982 136 443-
542		447.
543	44.	Wheater M & Rennie JM. Poor prognosis after prolonged ventilation for
544		bronchopulmonary dysplasia. Arch Dis Child Fetal Neonatal Ed 1994 71 F210-211.
545	45.	Gibson AT, Pearse RG & Wales JK. Growth retardation after dexamethasone
546		administration: assessment by knemometry. Arch Dis Child 1993 69 505-509.
547	46.	Wood NS, Costeloe K, Gibson AT, Hennessy EM, Marlow N & Wilkinson AR. The
548		EPICure study: growth and associated problems in children born at 25 weeks of
549		gestational age or less. Arch Dis Child Fetal Neonatal Ed 2003 88 F492-500.

550	47.	Gutbrod T, Wolke D, Soehne B, Ohrt B & Riegel K. Effects of gestation and birth
551	ч/.	weight on the growth and development of very low birthweight small for gestational
552		age infants: a matched group comparison. <i>Arch Dis Child Fetal Neonatal Ed</i> 2000 82
553		F208-214.
554	48.	Leger J, Limoni C & Czernichow P. Prediction of the outcome of growth at 2 years
	40.	
555		of age in neonates with intra-uterine growth retardation. <i>Early Hum Dev</i> 1997 48
556	40	211-223.
557	49.	Edouard T, Trivin C, Lawson-Body E, Pinto G, Souberbielle JC & Brauner R.
558		Extreme short stature after intrauterine growth retardation: factors associated with
559		lack of catch-up growth. <i>Horm Res</i> 2004 61 33-40.
560	50.	Tudehope DI. Human milk and the nutritional needs of preterm infants. J Pediatr
561		2013 162 S17-25.
562	51.	Thureen PJ. The neonatologist's dilemma: catch-up growth or beneficial
563		undernutrition in very low birth weight infants-what are optimal growth rates? J
564		Pediatr Gastroenterol Nutr 2007 45 Suppl 3 S152-154.
565	52.	Goulart AL, Morais MB & Kopelman BI. Impact of perinatal factors on growth
566		deficits of preterm infants. Rev Assoc Med Bras 2011 57 269-275.
567	53.	Westerberg AC, Henriksen C, Ellingvag A, Veierod MB, Juliusson PB, Nakstad B,
568		Aurvag AK, Ronnestad A, Gronn M, Iversen PO, et al. First year growth among very
569		low birth weight infants. Acta Paediatr 2010 99 556-562.
570	54.	Farooqi A, Hagglof B, Sedin G, Gothefors L & Serenius F. Growth in 10- to 12-year-
571		old children born at 23 to 25 weeks' gestation in the 1990s: a Swedish national
572		prospective follow-up study. Pediatrics 2006 118 e1452-1465.
573	55.	Yesinel S, Aldemir EY, Kavuncuoglu S & Yildiz H. Evaluation of growth in very
574		low birth weight preterm babies. Turk Pediatri Ars 2014 49 289-298.
575	56.	Euser AM, de Wit CC, Finken MJ, Rijken M & Wit JM. Growth of preterm born
576		children. Horm Res 2008 70 319-328.
577	57.	Finken MJ, Dekker FW, de Zegher F & Wit JM. Long-term height gain of
578		prematurely born children with neonatal growth restraint: parallellism with the
579		growth pattern of short children born small for gestational age. Pediatrics 2006 118
580		640-643.

Page 24 of 33

581	58.	Knops NB, Sneeuw KC, Brand R, Hille ET, den Ouden AL, Wit JM & Verloove-
582		Vanhorick SP. Catch-up growth up to ten years of age in children born very preterm
583		or with very low birth weight. BMC Pediatr 2005 5 26.
584	59.	Trebar B, Traunecker R, Selbmann HK & Ranke MB. Growth during the first two
585		years predicts pre-school height in children born with very low birth weight
586		(VLBW): results of a study of 1,320 children in Germany. Pediatr Res 2007 62 209-
587		214.
588	60.	Qvigstad E, Verloove-Vanhorick SP, Ens-Dokkum MH, Schreuder AM, Veen S,
589		Brand R, Oostdijk W & Ruys JH. Prediction of height achievement at five years of
590		age in children born very preterm or with very low birth weight: continuation of
591		catch-up growth after two years of age. Acta Paediatr 1993 82 444-448.
592	61.	Chaudhari S, Otiv M, Hoge M, Pandit A & Mote A. Growth and sexual maturation
593		of low birth weight infants at early adolescence. Indian Pediatr 2008 45 191-198.
594	62.	Itabashi K, Mishina J, Tada H, Sakurai M, Nanri Y & Hirohata Y. Longitudinal
595		follow-up of height up to five years of age in infants born preterm small for
596		gestational age; comparison to full-term small for gestational age infants. Early Hum
597		<i>Dev</i> 2007 83 327-333.
598	63.	Monset-Couchard M & de Bethmann O. Catch-up growth in 166 small-for-
599		gestational age premature infants weighing less than 1,000 g at birth. Biol Neonate
600		2000 78 161-167.
601	64.	Ford GW, Doyle LW, Davis NM & Callanan C. Very low birth weight and growth
602		into adolescence. Arch Pediatr Adolesc Med 2000 154 778-784.
603	65.	Ortiz Espejo M, Perez-Navero JL, Munoz-Villanueva MC & Mercedes GC.
604		Nutritional assessment in neonatal and prepubertal children with a history of
605		extrauterine growth restriction. Early Hum Dev 2013 89 763-768.
606	66.	Rieger-Fackeldey E, Blank C, Dinger J, Steinmacher J, Bode H & Schulze A.
607		Growth, neurological and cognitive development in infants with a birthweight <501 g
608		at age 5 years. Acta Paediatr 2010 99 1350-1355.
609	67.	Bracewell MA, Hennessy EM, Wolke D & Marlow N. The EPICure study: growth
610		and blood pressure at 6 years of age following extremely preterm birth. Arch Dis
611		Child Fetal Neonatal Ed 2008 93 F108-114.
612	68.	Pierrat V, Marchand-Martin L, Guemas I, Matis J, Burguet A, Picaud JC, Fresson J,
613		Alberge C, Marret S, Roze JC, et al. Height at 2 and 5 years of age in children born

614		very preterm: the EPIPAGE study. Arch Dis Child Fetal Neonatal Ed 2011 96 F348-
615		354.
616	69.	Karlberg J & Albertsson-Wikland K. Growth in full-term small-for-gestational-age
617		infants: from birth to final height. Pediatr Res 1995 38 733-739.
618	70.	Sullivan MC, McGrath MM, Hawes K & Lester BM. Growth trajectories of preterm
619		infants: birth to 12 years. J Pediatr Health Care 2008 22 83-93.
620	71.	Bocca-Tjeertes IF, Kerstjens JM, Reijneveld SA, de Winter AF & Bos AF. Growth
621		and predictors of growth restraint in moderately preterm children aged 0 to 4 years.
622		Pediatrics 2011 128 e1187-1194.
623	72.	Persson I, Ahlsson F, Ewald U, Tuvemo T, Qingyuan M, von Rosen D & Proos L.
624		Influence of perinatal factors on the onset of puberty in boys and girls: implications
625		for interpretation of link with risk of long term diseases. Am J Epidemiol 1999 150
626		747-755.
627	73.	Peralta-Carcelen M, Jackson DS, Goran MI, Royal SA, Mayo MS & Nelson KG.
628		Growth of adolescents who were born at extremely low birth weight without major
629		disability. J Pediatr 2000 136 633-640.
630	74.	Wehkalampi K, Hovi P, Dunkel L, Strang-Karlsson S, Jarvenpaa AL, Eriksson JG,
631		Andersson S & Kajantie E. Advanced pubertal growth spurt in subjects born preterm:
632		the Helsinki study of very low birth weight adults. J Clin Endocrinol Metab 2011 96
633		525-533.
634	75.	Brandt I, Sticker EJ, Gausche R & Lentze MJ. Catch-up growth of supine
635		length/height of very low birth weight, small for gestational age preterm infants to
636		adulthood. J Pediatr 2005 147 662-668.
637	76.	Lazar L, Pollak U, Kalter-Leibovici O, Pertzelan A & Phillip M. Pubertal course of
638		persistently short children born small for gestational age (SGA) compared with
639		idiopathic short children born appropriate for gestational age (AGA). Eur J
640		Endocrinol 2003 149 425-432.
641	77.	Verkauskiene R, Petraitiene I & Albertsson Wikland K. Puberty in children born
642		small for gestational age. Horm Res Paediatr 2013 80 69-77.
643	78.	Odberg MD, Sommerfelt K, Markestad T & Elgen IB. Growth and somatic health
644		until adulthood of low birthweight children. Arch Dis Child Fetal Neonatal Ed 2010
645		95 F201-205.

Page 26 of 33

 adults weighing less than 1500 g at birth. <i>Early Hum Dev</i> 2002 67 101-112. Boyle LW & Anderson PJ. Adult outcome of extremely preterm infants. <i>Pediatrics</i> 2010 126 342-351. Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J & Boyle M. Growth trajectories of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. <i>Pediatr Res</i> 2006 60 751-758. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. Boyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. Ken Barker DJ. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretor in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	646	79.	Weiler HA, Yuen CK & Seshia MM. Growth and bone mineralization of young
 2010 126 342-351. Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J & Boyle M. Growth trajectories of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. <i>Pediatr Res</i> 2006 60 751-758. Rebert S, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. Robyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Nag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. Rot Baul 2001 60 5-20. Kutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	647		adults weighing less than 1500 g at birth. Early Hum Dev 2002 67 101-112.
 81. Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J & Boyle M. Growth trajectories of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. <i>Pediatr Res</i> 2006 60 751-758. 82. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. 83. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. 84. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D	648	80.	Doyle LW & Anderson PJ. Adult outcome of extremely preterm infants. Pediatrics
 of extremely low birth weight infants from birth to young adulthood: a longitudinal, population-based study. <i>Pediatr Res</i> 2006 60 751-758. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. Boyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. Kuffield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I	649		2010 126 342-351.
 population-based study. <i>Pediatr Res</i> 2006 60 751-758. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. 83. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely pretern survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. 84. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	650	81.	Saigal S, Stoskopf B, Streiner D, Paneth N, Pinelli J & Boyle M. Growth trajectories
 82. Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E & Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. 83. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. 84. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	651		of extremely low birth weight infants from birth to young adulthood: a longitudinal,
 Makitie O. Decreased bone mineral density in adults born with very low birth weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. Boyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. Kutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Willer JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	652		population-based study. Pediatr Res 2006 60 751-758.
 weight: a cohort study. <i>PLoS Med</i> 2009 6 e1000135. Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J Theor Biol</i> 2003 221 143-161. Rot Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med Bull</i> 2001 60 5-20. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	653	82.	Hovi P, Andersson S, Jarvenpaa AL, Eriksson JG, Strang-Karlsson S, Kajantie E &
 Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. B4. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	654		Makitie O. Decreased bone mineral density in adults born with very low birth
 of extremely preterm survivors from birth to 18 years of age compared with term controls. <i>Pediatrics</i> 2013 131 e439-445. B4. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	655		weight: a cohort study. PLoS Med 2009 6 e1000135.
 controls. <i>Pediatrics</i> 2013 131 e439-445. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	656	83.	Roberts G, Cheong J, Opie G, Carse E, Davis N, Duff J, Lee KJ & Doyle L. Growth
 84. Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	657		of extremely preterm survivors from birth to 18 years of age compared with term
 and body size in early adulthood. <i>Arch Dis Child</i> 2004 89 347-350. 85. Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	658		controls. Pediatrics 2013 131 e439-445.
 Kaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis revisited. <i>Diabetologia</i> 2012 55 2085-2088. Kells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? <i>J</i> <i>Theor Biol</i> 2003 221 143-161. R. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. K. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	659	84.	Doyle LW, Faber B, Callanan C, Ford GW & Davis NM. Extremely low birth weight
 revisited. <i>Diabetologia</i> 2012 55 2085-2088. 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	660		and body size in early adulthood. Arch Dis Child 2004 89 347-350.
 86. Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J <i>Theor Biol</i> 2003 221 143-161. 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. Br Med Bull 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. Growth Horm IGF Res 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. J Clin Endocrinol Metab 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. Pediatr Res 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	661	85.	Vaag AA, Grunnet LG, Arora GP & Brons C. The thrifty phenotype hypothesis
664Theor Biol 2003 221 143-161.66587.666Bull 2001 60 5-20.66788.668Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M &669infants. Growth Horm IGF Res 2004 14 Suppl A S130-135.67089.671Spontaneous pulsatile growth hormone release in male and female premature infants.672J Clin Endocrinol Metab 1992 75 1508-1513.67390.90.Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth674hormone secretion in the neonate. Pediatr Res 1992 32 286-290.67691.677Ley D. Influence of insulin-like growth factor I and nutrition during phases of	662		revisited. Diabetologia 2012 55 2085-2088.
 87. Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. <i>Br Med</i> <i>Bull</i> 2001 60 5-20. 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	663	86.	Wells JC. The thrifty phenotype hypothesis: thrifty offspring or thrifty mother? J
666Bull 2001 60 5-20.66788.Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M &668Hofman PL. The endocrine consequences for very low birth weight premature669infants. Growth Horm IGF Res 2004 14 Suppl A S130-135.67089.Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr.671Spontaneous pulsatile growth hormone release in male and female premature infants.672J Clin Endocrinol Metab 1992 75 1508-1513.67390.90.Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth674hormone secretion in the neonate. Pediatr Res 1992 32 286-290.67691.91.Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A &677Ley D. Influence of insulin-like growth factor I and nutrition during phases of	664		Theor Biol 2003 221 143-161.
 667 88. Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M & 668 Hofman PL. The endocrine consequences for very low birth weight premature 669 infants. Growth Horm IGF Res 2004 14 Suppl A S130-135. 670 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. 671 Spontaneous pulsatile growth hormone release in male and female premature infants. 672 J Clin Endocrinol Metab 1992 75 1508-1513. 673 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth 674 hormone secretory rate in premature infants: deconvolution analysis of pulsatile 675 growth hormone secretion in the neonate. Pediatr Res 1992 32 286-290. 676 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & 677 Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	665	87.	Hales CN & Barker DJ. The thrifty phenotype hypothesis: type 2 diabetes. Br Med
 Hofman PL. The endocrine consequences for very low birth weight premature infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. 89. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	666		Bull 2001 60 5-20.
 infants. <i>Growth Horm IGF Res</i> 2004 14 Suppl A S130-135. Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	667	88.	Cutfield WS, Regan FA, Jackson WE, Jefferies CA, Robinson EM, Harris M &
 Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr. Spontaneous pulsatile growth hormone release in male and female premature infants. <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	668		Hofman PL. The endocrine consequences for very low birth weight premature
 671 Spontaneous pulsatile growth hormone release in male and female premature infants. 672 <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. 673 90. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth 674 hormone secretory rate in premature infants: deconvolution analysis of pulsatile 675 growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 676 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & 677 Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	669		infants. Growth Horm IGF Res 2004 14 Suppl A S130-135.
 <i>J Clin Endocrinol Metab</i> 1992 75 1508-1513. Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	670	89.	Miller JD, Wright NM, Esparza A, Jansons R, Yang HC, Hahn H & Mosier HD, Jr.
 Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	671		Spontaneous pulsatile growth hormone release in male and female premature infants.
 hormone secretory rate in premature infants: deconvolution analysis of pulsatile growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	672		J Clin Endocrinol Metab 1992 75 1508-1513.
 675 growth hormone secretion in the neonate. <i>Pediatr Res</i> 1992 32 286-290. 676 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & 677 Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	673	90.	Wright NM, Northington FJ, Miller JD, Veldhuis JD & Rogol AD. Elevated growth
 676 91. Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A & 677 Ley D. Influence of insulin-like growth factor I and nutrition during phases of 	674		hormone secretory rate in premature infants: deconvolution analysis of pulsatile
677 Ley D. Influence of insulin-like growth factor I and nutrition during phases of	675		growth hormone secretion in the neonate. Pediatr Res 1992 32 286-290.
	676	91.	Hansen-Pupp I, Lofqvist C, Polberger S, Niklasson A, Fellman V, Hellstrom A &
	677		Ley D. Influence of insulin-like growth factor I and nutrition during phases of
b/8 postnatal growth in very preterm infants. <i>Pediatr Res</i> 2011 69 448-453.	678		postnatal growth in very preterm infants. Pediatr Res 2011 69 448-453.

679	92.	Kajantie E. Insulin-like growth factor (IGF)-I, IGF binding protein (IGFBP)-3,
680		phosphoisoforms of IGFBP-1 and postnatal growth in very-low-birth-weight infants.
681		Horm Res 2003 60 Suppl 3 124-130.
682	93.	Rowe DL, Derraik JG, Robinson E, Cutfield WS & Hofman PL. Preterm birth and
683		the endocrine regulation of growth in childhood and adolescence. Clin Endocrinol
684		(<i>Oxf</i>) 2011 75 661-665.
685	94.	Kistner A, Deschmann E, Legnevall L & Vanpee M. Preterm born 9-year-olds have
686		elevated IGF-1 and low prolactin, but levels vary with behavioural and eating
687		disorders. Acta Paediatr 2014 103 1198-1205.
688	95.	Miles HL, Derraik JG, Chiavaroli V, Hofman PL & Cutfield WS. Response to IGF-1
689		Generation Test in Short Prepubertal Children Born Very Preterm or at Term. Horm
690		Res Paediatr 2015 84 298-304.
691	96.	van de Lagemaat M, Rotteveel J, Heijboer AC, Lafeber HN & van Weissenbruch
692		MM. Growth in preterm infants until six months postterm: the role of insulin and
693		IGF-I. Horm Res Paediatr 2013 80 92-99.
694	97.	Schreiner F, Gohlke B, Stutte S, Bartmann P & Woelfle J. Growth hormone receptor
695		d3-variant, insulin-like growth factor binding protein-1 -575G/A polymorphism and
696		postnatal catch-up growth: association with parameters of glucose homeostasis in
697		former extremely low birth weight preterm infants. Growth Horm IGF Res 2010 20
698		201-204.
699	98.	Guasti L, Silvennoinen S, Bulstrode NW, Ferretti P, Sankilampi U & Dunkel L.
700		Elevated FGF21 leads to attenuated postnatal linear growth in preterm infants
701		through GH resistance in chondrocytes. J Clin Endocrinol Metab 2014 99 E2198-
702		2206.
703	99.	Lafeber HN. Nutritional management and growth hormone treatment of preterm
704		infants born small for gestational age. Acta Paediatr Suppl 1997 423 202-205;
705		discussion 206.
706	100.	Qi W, Shen Q, Qiao Y, Wei Z, Wei Y & Fan T. The impact of recombinant human
707		growth hormone on growth and development of low weight premature infants. Int J
708		<i>Exp Med</i> 2016 9 4983-4988.
709	101.	Van Pareren Y, Mulder P, Houdijk M, Jansen M, Reeser M & Hokken-Koelega A.
710		Adult height after long-term, continuous growth hormone (GH) treatment in short

Page 28 of 33

711		children born small for gestational age: results of a randomized, double-blind, dose-
712		response GH trial. J Clin Endocrinol Metab 2003 88 3584-3590.
713	102.	Dahlgren J & Wikland KA. Final height in short children born small for gestational
714		age treated with growth hormone. Pediatr Res 2005 57 216-222.
715	103.	Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R & Rogol A.
716		Management of the child born small for gestational age through to adulthood: a
717		Consensus Statement of the International Societies of Pediatric Endocrinology and
718		the Growth Hormone Research Society. J Clin Endocrinol Metab 2007 92 804-810.
719	104.	de Kort SW, Willemsen RH, van der Kaay DC, Duivenvoorden HJ & Hokken-
720		Koelega AC. Does preterm birth influence the response to growth hormone treatment
721		in short, small for gestational age children? Clin Endocrinol (Oxf) 2009 70 582-587.
722	105.	Boguszewski MC, Lindberg A & Wollmann HA. Three-year growth response to
723		growth hormone treatment in very young children born small for gestational age-data
724		from KIGS. J Clin Endocrinol Metab 2014 99 2683-2688.
725	106.	Boguszewski MC, Karlsson H, Wollmann HA, Wilton P & Dahlgren J. Growth
726		hormone treatment in short children born prematurelydata from KIGS. J Clin
727		Endocrinol Metab 2011 96 1687-1694.
728	107.	Berndt C, Schweizer R, Ranke MB, Binder G & Martin DD. Height, muscle, fat and
729		bone response to growth hormone in short children with very low birth weight born
730		appropriate for gestational age and small for gestational age. Horm Res Paediatr
731		2014 82 81-88.
732	108.	Dahlgren J, Kristrom B, Niklasson A, Nierop AF, Rosberg S & Albertsson-Wikland
733		K. Models predicting the growth response to growth hormone treatment in short
734		children independent of GH status, birth size and gestational age. BMC Med Inform
735		<i>Decis Mak</i> 2007 7 40.
736	109.	de Ridder MA, Stijnen T & Hokken-Koelega AC. Prediction model for adult height
737		of small for gestational age children at the start of growth hormone treatment. J Clin
738		Endocrinol Metab 2008 93 477-483.
739	110.	Garcia RA, Longui CA, Kochi C, Arruda M, Faria CD, Calliari LE, Monte O, Pachi
740		PR & Saenger P. First two years' response to growth hormone treatment in very
741		young preterm small for gestational age children. Horm Res 2009 72 275-280.
742		

LEGEND TO FIGURE 1

Growth from birth to 10 years in children born preterm. Five possibilities of growth trajectories are presented:

AGA: Initial growth deceleration similar to babies born at term followed by a catch-up period and stabilization of growth.

AGA - EUGR: More intense initial growth restriction followed by a catch-up growth that occurs before 3 years of corrected age.

AGA - EUGR no catch-up: No catch-up growth after the intense initial growth restriction. Growth resembles growth pattern of SGA children without catch-up growth.

SGA - no catch-up: Preterm SGA children without catch-up growth.

SGA - catch-up: Preterm SGA with late catch-up growth, up to adolescence, but keeping lower height compared to peers born at term.

AGA (appropriate for gestational age); SGA (small for gestational age); EUGR (extrauterine

growth restriction)

PERIOD	RISK FACTORS				
Perinatal	Intrauterine growth retardation				
	Pregnancy-induced hypertension				
	Male sex				
Neonatal	Gestational age < 32 weeks (specially < 28 weeks)				
	Birth weigh < 1500 g				
	Birth length < -2 SD				
	Small for gestational age				
	Extrauterine growth restriction				
	Bronchopulmonary dysplasia				
	Metabolic bone disease of prematurity				
	Necrotizing enterocolitis				
	Post-natal corticosteroids use				
	Long time in total parenteral nutrition				
	Feeding difficulties				
Infancy	Chronic respiratory diseases				
	Cerebral palsy				
	Neurodevelopment delay				
	Feeding difficulties				
	Lack or delay of catch-up growth				
	Low target height				
	Low socioeconomic status				
Adolescence	Young age at onset of pubertal growth spurt and fast progression of puberty				
	Lack or delay of catch-up growth				
	Low target height				
	Maternal short stature (specially < 160 cm)				
	Low maternal education				
	Low socioeconomic status				

Table 1 – Risk factors for growth failure in children born preterm

Note: For details, see references 37,41-51, 63-65 and 74.

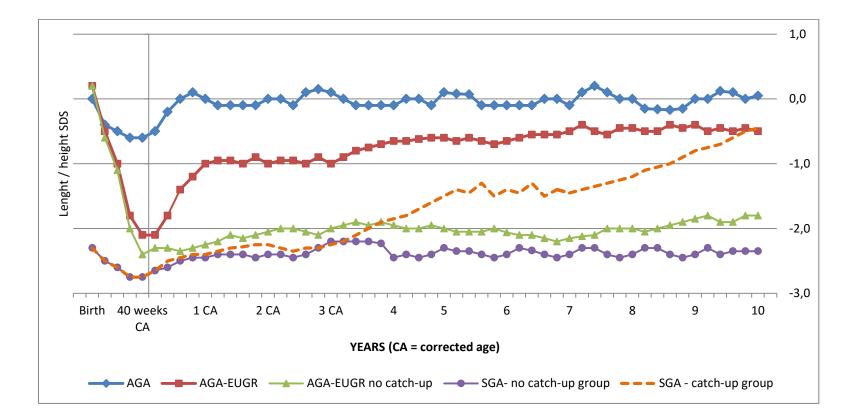

Study	Preterm (n)	Control group (n)	Age (years)	Adult Height	
				Preterm	Control
Weiler et al. (2002) (79)	25 (6 SGA) BW < 1500 g GA < 37 weeks	25	17.2 ± 1.2	164.8 (6.4) cm 0.3 (1.0) SDS	172.1 (9.7) cm ^a 1.2 (1.5) SDS ^a
Hack et al. (2003) (41)	195 (39 SGA) BW < 1500 g GA 29.8 weeks	208	20.0	M: 173.7 (7.9) cm F: 161.7 (7.3) cm 5 SGA < - 2 SDS	M: 177.0 (6.8) cm ^a F: 163.0 (7.0) cm
Doyle et al. (2004) (80)	42 (7 SGA) BW: 500 to 999 g GA < 32 weeks	37	20.3 ± 1.0	all: -0.52 (1.18) SDS M: 172.3 (7.7) cm F: 161.0 (7.4) cm All SGA: < -2 SDS	M: 178.0 (3.9) cm ^a F: 165.5 (7.5) cm
Brandt et al. (2005) (75)	108 (46 SGA) GA < 37 weeks AGA BW: 1350 ± 150 g		22.8 (17 to 28)	SGA no catch-up (n = 25): -1.89 (0.86) SDS SGA catch-up (n = 21): 0.03 (0.99) SDS	
Saigal et al. (2006) (81)	147 (36 SGA) BW: 501 to 1000 g GA: 27.1 ± 2.3 weeks	131	$\begin{array}{c} \text{M: } 23.5 \pm 1.4) \\ \text{F: } 23.2 \pm 1.1 \end{array}$	M: 170.6 (9.5) cm F: 158.3 (6.8) cm	M: 177.8 (7.7) cm ^a F: 164.5 (6.7) cm ^a
Finken et al. (2006) (57)	27 SGA/ 79 AGA PGR* / 274 AGA no-PGR BW < 1500 g GA < 32 weeks		19.0	SGA: -1.2 SDS AGA PGR: -1.1 SDS AGA no-PGR: -0.4 SDS ^b	
Hovi et al. (2009) (82)	144 (49 SGA) BW < 1500g GA < 32 weeks	139	22.6 ± 2.2	M: -0.45 (1.06) SDS F: -0.49 (1.31) SDS	M: 0.30 (0.92) SDS ^a F: 0.35 (1.14) SDS ^a
Odberg et al. (2010) (78)	134 (75 SGA) BW < 2000 g GA: 32.2 ± 3.3	135	19.0	168.1 (8.2) cm	174.1 (10.4) cm ^a
Wehkalampi et al. (2011) (74)	113 (35 SGA) BW < 1500 g GA < 32 weeks	146	SGA: 22.6 AGA: 22.4	SGA M: 175.8 (8.0) cm F: 160.3 (5.8) cm AGA M: 174.8 (7.2) cm F: 164.5 (8.6) cm	M: 180.2 (6.2) cm ^a F: 167.9 (6.4) cm ^a
Roberts et al. (2013) (83)	166 BW < 1000 g GA < 28 weeks	152	18.0	-0.47 (1.14) SDS	0.26 (0.98) SDS ^a

TABLE 2 – Studies of adult height of preterm subjects measured in early adulthood

2

BW (birth weight), GA (gestational age), SGA (small for gestational age), AGA (appropriate for gestational age), PGR (preterm growth restraint). *PGR defined as length and/or weight <-2 SDS at 3 months postterm.

^a Difference statistically significant between preterm and control group. ^b Difference statistically significant between AGA PGR and AGA non-PGR.

